frigate/docker/rocm/migraphx/targets/gpu/jit/ck_gemm.cpp
WhiteWolf84 931b31452a upload2
2025-02-03 22:44:02 +01:00

236 lines
9.6 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <fstream>
#include <migraphx/filesystem.hpp>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/ck.hpp>
#include <migraphx/env.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/module.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
using namespace migraphx::gpu::gen; // NOLINT
// NOLINTNEXTLINE
static const char* const ck_gemm_kernel = R"__migraphx__(
#include <args.hpp>
#include <migraphx/kernels/ck_gemm.hpp>
#include <migraphx/kernels/pointwise.hpp>
#include <migraphx/kernels/ops.hpp>
#include <${include}>
namespace migraphx {
${preamble}
extern "C" {
MIGRAPHX_GLOBAL void ${kernel}(${params})
{
transform_args(make_tensors(), rotate_last())(${args})([](auto... xs) {
ck_gemm<${solution}, ${blocks_per_batch}>(xs...);
});
}
}
} // namespace migraphx
)__migraphx__";
struct ck_gemm_compiler : compiler<ck_gemm_compiler>
{
std::vector<std::string> names() const { return {"ck_gemm", "gpu::ck_gemm"}; }
ck::host::device_gemm_multiple_d::Problem create_problem(const std::vector<shape>& inputs,
const value& v) const
{
const auto& a_shape = inputs[0];
const auto& b_shape = inputs[1];
const auto& c_shape = inputs.back();
// cppcheck-suppress unreadVariable
auto rank = a_shape.ndim();
auto batch_count = get_batch_count(c_shape);
auto m = c_shape.lens()[rank - 2];
m = can_fold_batch(inputs) ? m * batch_count : m;
auto n = c_shape.lens().back();
auto k = a_shape.lens().back();
const bool trans_a = transposed_matrix(a_shape);
const bool trans_b = transposed_matrix(b_shape);
const bool trans_e = transposed_matrix(c_shape);
const auto a_type = get_type(a_shape);
const auto b_type = get_type(b_shape);
const auto e_type = get_type(c_shape);
std::vector<bool> ds_layout;
std::transform(inputs.begin() + 2,
inputs.end() - 1,
std::back_inserter(ds_layout),
[](const auto& i) { return transposed_matrix(i); });
std::vector<ck::host::DataType> ds_type;
std::transform(inputs.begin() + 2,
inputs.end() - 1,
std::back_inserter(ds_type),
[](const auto& i) { return get_type(i); });
std::string ck_passthrough = "ck_passthrough";
std::string cde_op = ck_passthrough;
assert(inputs.size() < 4 or v.contains("post"));
if(v.contains("post"))
{
cde_op = v.at("post").to<std::string>();
}
return ck::host::device_gemm_multiple_d::Problem{m,
n,
k,
trans_a,
trans_b,
trans_e,
ds_layout,
a_type,
b_type,
e_type,
ds_type,
ck_passthrough,
ck_passthrough,
cde_op};
}
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
const auto& c_shape = inputs.back();
auto tuning_value = v.get("tuning_value", 34);
auto batch_count = get_batch_count(c_shape);
auto problem = create_problem(inputs, v);
const auto include_header = problem.GetIncludeHeader();
const auto solutions = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
const auto& solution = solutions.at(tuning_value);
const auto template_str = solution.template_str;
const auto blocks_per_batch = solution.grid_size;
const auto block_size = solution.block_size;
hip_compile_options options;
options.additional_src_files = ck_headers();
auto grid_size = can_fold_batch(inputs) ? blocks_per_batch : batch_count * blocks_per_batch;
options.set_launch_params(v, grid_size * block_size, block_size);
options.inputs = inputs;
options.output = c_shape;
options.kernel_name = v.get("kernel", "ck_gemm_kernel");
options.virtual_inputs = inputs;
if(can_fold_batch(inputs))
{
auto vinputs = inputs;
fold_batch_dims(vinputs[0]);
remove_batch_dims(vinputs[1]);
std::for_each(vinputs.begin() + 2, vinputs.end(), fold_batch_dims);
options.virtual_inputs = vinputs;
}
if(v.get("check", false) or enabled(MIGRAPHX_CK_DEBUG{}))
options.emplace_param("-DMIGRAPHX_CK_CHECK=1");
auto src = interpolate_string(ck_gemm_kernel,
{{"solution", template_str},
{"include", include_header},
{"params", enum_params(inputs.size(), "void * private_p")},
{"args", enum_params(inputs.size(), "private_p")},
{"blocks_per_batch", to_string(blocks_per_batch)},
{"preamble", v.get("preamble", std::string{})},
{"kernel", options.kernel_name}});
return compile_hip_code_object(ctx, src, options);
}
value create_settings(instruction_ref ins, const operation& op) const
{
auto v = op.to_value();
v["kernel"] = "ck_gemm_kernel";
if(not ins->module_inputs().empty())
{
auto* pm = ins->module_inputs().front();
v["preamble"] = generate_pointwise(*pm, "post_ck_gemm_function") +
"\nMIGRAPHX_LIFT_CLASS(post_ck_gemm, post_ck_gemm_function);";
v["post"] = "ck_function_adaptor<post_ck_gemm>";
v["kernel"] = to_c_id("ck_gemm_" + generate_name_from_ops(*pm) + "_kernel");
}
return v;
}
compiler_replace
compile(context& ctx, instruction_ref ins, const operation& op, const value& solution) const
{
auto shapes = to_shapes(ins->inputs());
auto v = create_settings(ins, op);
if(not solution.is_null())
v["tuning_value"] = solution;
return {compile_op(ctx, shapes, v),
[=](module& m, instruction_ref ins2, const operation& code_object) {
if(enabled(MIGRAPHX_LOG_CK_GEMM{}))
{
std::vector<shape> gemm_shapes{
shapes[0], shapes[1], shapes.back().with_type(shapes[0].type())};
std::cout << "gpu::ck_gemm: " << to_json_string(to_value(gemm_shapes))
<< std::endl;
}
m.replace_instruction(ins2, code_object, ins2->inputs());
}};
}
optional<tuning_config>
get_tuning_config(context& ctx, instruction_ref ins, const operation& op, bool exhaustive) const
{
if(not exhaustive and not enabled(MIGRAPHX_TUNE_CK{}))
return nullopt;
tuning_config tc;
auto shapes = to_shapes(ins->inputs());
auto problem = create_problem(shapes, create_settings(ins, op));
auto solutions = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
tc.solutions.resize(solutions.size());
std::iota(tc.solutions.begin(), tc.solutions.end(), 0);
std::vector<shape> gemm_shapes{shapes[0], shapes[1], shapes.back()};
tc.problem = to_value(gemm_shapes);
return tc;
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx