mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 09:27:06 +03:00
236 lines
9.6 KiB
C++
236 lines
9.6 KiB
C++
|
|
/*
|
||
|
|
* The MIT License (MIT)
|
||
|
|
*
|
||
|
|
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
|
||
|
|
*
|
||
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
|
* in the Software without restriction, including without limitation the rights
|
||
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
|
* furnished to do so, subject to the following conditions:
|
||
|
|
*
|
||
|
|
* The above copyright notice and this permission notice shall be included in
|
||
|
|
* all copies or substantial portions of the Software.
|
||
|
|
*
|
||
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
|
* THE SOFTWARE.
|
||
|
|
*/
|
||
|
|
#include <fstream>
|
||
|
|
#include <migraphx/filesystem.hpp>
|
||
|
|
#include <migraphx/gpu/compiler.hpp>
|
||
|
|
#include <migraphx/make_op.hpp>
|
||
|
|
#include <migraphx/gpu/context.hpp>
|
||
|
|
|
||
|
|
#include <migraphx/gpu/ck.hpp>
|
||
|
|
#include <migraphx/env.hpp>
|
||
|
|
#include <migraphx/file_buffer.hpp>
|
||
|
|
#include <migraphx/gpu/compile_gen.hpp>
|
||
|
|
#include <migraphx/gpu/compile_hip.hpp>
|
||
|
|
#include <migraphx/gpu/compile_hip_code_object.hpp>
|
||
|
|
#include <migraphx/module.hpp>
|
||
|
|
#include <migraphx/ranges.hpp>
|
||
|
|
#include <migraphx/reduce_dims.hpp>
|
||
|
|
#include <migraphx/stringutils.hpp>
|
||
|
|
|
||
|
|
namespace migraphx {
|
||
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
||
|
|
|
||
|
|
namespace gpu {
|
||
|
|
|
||
|
|
using namespace migraphx::gpu::gen; // NOLINT
|
||
|
|
|
||
|
|
// NOLINTNEXTLINE
|
||
|
|
static const char* const ck_gemm_kernel = R"__migraphx__(
|
||
|
|
#include <args.hpp>
|
||
|
|
#include <migraphx/kernels/ck_gemm.hpp>
|
||
|
|
#include <migraphx/kernels/pointwise.hpp>
|
||
|
|
#include <migraphx/kernels/ops.hpp>
|
||
|
|
#include <${include}>
|
||
|
|
|
||
|
|
namespace migraphx {
|
||
|
|
|
||
|
|
${preamble}
|
||
|
|
|
||
|
|
extern "C" {
|
||
|
|
|
||
|
|
MIGRAPHX_GLOBAL void ${kernel}(${params})
|
||
|
|
{
|
||
|
|
transform_args(make_tensors(), rotate_last())(${args})([](auto... xs) {
|
||
|
|
ck_gemm<${solution}, ${blocks_per_batch}>(xs...);
|
||
|
|
});
|
||
|
|
}
|
||
|
|
|
||
|
|
}
|
||
|
|
|
||
|
|
} // namespace migraphx
|
||
|
|
|
||
|
|
)__migraphx__";
|
||
|
|
|
||
|
|
struct ck_gemm_compiler : compiler<ck_gemm_compiler>
|
||
|
|
{
|
||
|
|
std::vector<std::string> names() const { return {"ck_gemm", "gpu::ck_gemm"}; }
|
||
|
|
|
||
|
|
ck::host::device_gemm_multiple_d::Problem create_problem(const std::vector<shape>& inputs,
|
||
|
|
const value& v) const
|
||
|
|
{
|
||
|
|
const auto& a_shape = inputs[0];
|
||
|
|
const auto& b_shape = inputs[1];
|
||
|
|
const auto& c_shape = inputs.back();
|
||
|
|
|
||
|
|
// cppcheck-suppress unreadVariable
|
||
|
|
auto rank = a_shape.ndim();
|
||
|
|
auto batch_count = get_batch_count(c_shape);
|
||
|
|
auto m = c_shape.lens()[rank - 2];
|
||
|
|
m = can_fold_batch(inputs) ? m * batch_count : m;
|
||
|
|
auto n = c_shape.lens().back();
|
||
|
|
auto k = a_shape.lens().back();
|
||
|
|
|
||
|
|
const bool trans_a = transposed_matrix(a_shape);
|
||
|
|
const bool trans_b = transposed_matrix(b_shape);
|
||
|
|
const bool trans_e = transposed_matrix(c_shape);
|
||
|
|
const auto a_type = get_type(a_shape);
|
||
|
|
const auto b_type = get_type(b_shape);
|
||
|
|
const auto e_type = get_type(c_shape);
|
||
|
|
std::vector<bool> ds_layout;
|
||
|
|
std::transform(inputs.begin() + 2,
|
||
|
|
inputs.end() - 1,
|
||
|
|
std::back_inserter(ds_layout),
|
||
|
|
[](const auto& i) { return transposed_matrix(i); });
|
||
|
|
std::vector<ck::host::DataType> ds_type;
|
||
|
|
std::transform(inputs.begin() + 2,
|
||
|
|
inputs.end() - 1,
|
||
|
|
std::back_inserter(ds_type),
|
||
|
|
[](const auto& i) { return get_type(i); });
|
||
|
|
|
||
|
|
std::string ck_passthrough = "ck_passthrough";
|
||
|
|
std::string cde_op = ck_passthrough;
|
||
|
|
assert(inputs.size() < 4 or v.contains("post"));
|
||
|
|
if(v.contains("post"))
|
||
|
|
{
|
||
|
|
cde_op = v.at("post").to<std::string>();
|
||
|
|
}
|
||
|
|
|
||
|
|
return ck::host::device_gemm_multiple_d::Problem{m,
|
||
|
|
n,
|
||
|
|
k,
|
||
|
|
trans_a,
|
||
|
|
trans_b,
|
||
|
|
trans_e,
|
||
|
|
ds_layout,
|
||
|
|
a_type,
|
||
|
|
b_type,
|
||
|
|
e_type,
|
||
|
|
ds_type,
|
||
|
|
ck_passthrough,
|
||
|
|
ck_passthrough,
|
||
|
|
cde_op};
|
||
|
|
}
|
||
|
|
|
||
|
|
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
|
||
|
|
{
|
||
|
|
const auto& c_shape = inputs.back();
|
||
|
|
auto tuning_value = v.get("tuning_value", 34);
|
||
|
|
auto batch_count = get_batch_count(c_shape);
|
||
|
|
auto problem = create_problem(inputs, v);
|
||
|
|
|
||
|
|
const auto include_header = problem.GetIncludeHeader();
|
||
|
|
const auto solutions = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
|
||
|
|
const auto& solution = solutions.at(tuning_value);
|
||
|
|
const auto template_str = solution.template_str;
|
||
|
|
const auto blocks_per_batch = solution.grid_size;
|
||
|
|
const auto block_size = solution.block_size;
|
||
|
|
|
||
|
|
hip_compile_options options;
|
||
|
|
options.additional_src_files = ck_headers();
|
||
|
|
auto grid_size = can_fold_batch(inputs) ? blocks_per_batch : batch_count * blocks_per_batch;
|
||
|
|
options.set_launch_params(v, grid_size * block_size, block_size);
|
||
|
|
options.inputs = inputs;
|
||
|
|
options.output = c_shape;
|
||
|
|
options.kernel_name = v.get("kernel", "ck_gemm_kernel");
|
||
|
|
options.virtual_inputs = inputs;
|
||
|
|
if(can_fold_batch(inputs))
|
||
|
|
{
|
||
|
|
auto vinputs = inputs;
|
||
|
|
fold_batch_dims(vinputs[0]);
|
||
|
|
remove_batch_dims(vinputs[1]);
|
||
|
|
std::for_each(vinputs.begin() + 2, vinputs.end(), fold_batch_dims);
|
||
|
|
options.virtual_inputs = vinputs;
|
||
|
|
}
|
||
|
|
|
||
|
|
if(v.get("check", false) or enabled(MIGRAPHX_CK_DEBUG{}))
|
||
|
|
options.emplace_param("-DMIGRAPHX_CK_CHECK=1");
|
||
|
|
|
||
|
|
auto src = interpolate_string(ck_gemm_kernel,
|
||
|
|
{{"solution", template_str},
|
||
|
|
{"include", include_header},
|
||
|
|
{"params", enum_params(inputs.size(), "void * private_p")},
|
||
|
|
{"args", enum_params(inputs.size(), "private_p")},
|
||
|
|
{"blocks_per_batch", to_string(blocks_per_batch)},
|
||
|
|
{"preamble", v.get("preamble", std::string{})},
|
||
|
|
{"kernel", options.kernel_name}});
|
||
|
|
|
||
|
|
return compile_hip_code_object(ctx, src, options);
|
||
|
|
}
|
||
|
|
|
||
|
|
value create_settings(instruction_ref ins, const operation& op) const
|
||
|
|
{
|
||
|
|
auto v = op.to_value();
|
||
|
|
v["kernel"] = "ck_gemm_kernel";
|
||
|
|
if(not ins->module_inputs().empty())
|
||
|
|
{
|
||
|
|
auto* pm = ins->module_inputs().front();
|
||
|
|
v["preamble"] = generate_pointwise(*pm, "post_ck_gemm_function") +
|
||
|
|
"\nMIGRAPHX_LIFT_CLASS(post_ck_gemm, post_ck_gemm_function);";
|
||
|
|
v["post"] = "ck_function_adaptor<post_ck_gemm>";
|
||
|
|
v["kernel"] = to_c_id("ck_gemm_" + generate_name_from_ops(*pm) + "_kernel");
|
||
|
|
}
|
||
|
|
return v;
|
||
|
|
}
|
||
|
|
|
||
|
|
compiler_replace
|
||
|
|
compile(context& ctx, instruction_ref ins, const operation& op, const value& solution) const
|
||
|
|
{
|
||
|
|
auto shapes = to_shapes(ins->inputs());
|
||
|
|
auto v = create_settings(ins, op);
|
||
|
|
if(not solution.is_null())
|
||
|
|
v["tuning_value"] = solution;
|
||
|
|
return {compile_op(ctx, shapes, v),
|
||
|
|
[=](module& m, instruction_ref ins2, const operation& code_object) {
|
||
|
|
if(enabled(MIGRAPHX_LOG_CK_GEMM{}))
|
||
|
|
{
|
||
|
|
std::vector<shape> gemm_shapes{
|
||
|
|
shapes[0], shapes[1], shapes.back().with_type(shapes[0].type())};
|
||
|
|
std::cout << "gpu::ck_gemm: " << to_json_string(to_value(gemm_shapes))
|
||
|
|
<< std::endl;
|
||
|
|
}
|
||
|
|
m.replace_instruction(ins2, code_object, ins2->inputs());
|
||
|
|
}};
|
||
|
|
}
|
||
|
|
|
||
|
|
optional<tuning_config>
|
||
|
|
get_tuning_config(context& ctx, instruction_ref ins, const operation& op, bool exhaustive) const
|
||
|
|
{
|
||
|
|
if(not exhaustive and not enabled(MIGRAPHX_TUNE_CK{}))
|
||
|
|
return nullopt;
|
||
|
|
tuning_config tc;
|
||
|
|
auto shapes = to_shapes(ins->inputs());
|
||
|
|
auto problem = create_problem(shapes, create_settings(ins, op));
|
||
|
|
auto solutions = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
|
||
|
|
tc.solutions.resize(solutions.size());
|
||
|
|
std::iota(tc.solutions.begin(), tc.solutions.end(), 0);
|
||
|
|
std::vector<shape> gemm_shapes{shapes[0], shapes[1], shapes.back()};
|
||
|
|
tc.problem = to_value(gemm_shapes);
|
||
|
|
return tc;
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
} // namespace gpu
|
||
|
|
} // namespace MIGRAPHX_INLINE_NS
|
||
|
|
} // namespace migraphx
|