mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 01:17:06 +03:00
155 lines
6.1 KiB
C++
155 lines
6.1 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <migraphx/pad_calc.hpp>
|
|
|
|
namespace migraphx {
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
|
|
|
void calculate_padding(int64_t idx,
|
|
std::vector<int64_t>& pads,
|
|
int64_t input_dim,
|
|
int64_t stride,
|
|
int64_t dilation,
|
|
int64_t weight_dim,
|
|
bool is_same_upper)
|
|
{
|
|
int64_t output_dim = (input_dim + stride - 1) / stride; // round up result
|
|
int64_t new_weight_dim = weight_dim + (weight_dim - 1) * (dilation - 1);
|
|
int64_t pad =
|
|
std::max(static_cast<int64_t>(0), (output_dim - 1) * stride + new_weight_dim - input_dim);
|
|
auto pad_ndims = pads.size() / 2;
|
|
|
|
if(is_same_upper)
|
|
{
|
|
pads[idx] = pad / 2;
|
|
pads[idx + pad_ndims] = pad - pad / 2;
|
|
}
|
|
else
|
|
{
|
|
pads[idx + pad_ndims] = pad / 2;
|
|
pads[idx] = pad - pad / 2;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Given the input array dimensions; kernel (wei_lens); strides; and dilations,
|
|
* calculate the padding value in each dimension.
|
|
*
|
|
*/
|
|
std::vector<std::size_t> calc_dyn_auto_pad(const std::vector<std::size_t>& input_lens,
|
|
const std::vector<std::size_t>& wei_lens,
|
|
const std::vector<std::size_t>& strides,
|
|
const std::vector<std::size_t>& dilations,
|
|
bool use_upper)
|
|
{
|
|
std::vector<std::size_t> padding;
|
|
assert(input_lens.size() >= 3);
|
|
assert(input_lens.size() == wei_lens.size());
|
|
std::size_t num_spatial_dims = input_lens.size() - 2;
|
|
padding.resize(2 * num_spatial_dims);
|
|
for(std::size_t i = 0; i < num_spatial_dims; i++)
|
|
{
|
|
std::ptrdiff_t input_dim = input_lens[i + 2];
|
|
std::ptrdiff_t stride = strides[i];
|
|
std::ptrdiff_t weight_dim = wei_lens[i + 2];
|
|
std::ptrdiff_t dilation = dilations[i];
|
|
std::ptrdiff_t output_dim = (input_dim + stride - 1) / stride; // round up result
|
|
std::ptrdiff_t new_weight_dim = weight_dim + (weight_dim - 1) * (dilation - 1);
|
|
std::size_t pad = std::max(static_cast<std::ptrdiff_t>(0),
|
|
(output_dim - 1) * stride + new_weight_dim - input_dim);
|
|
auto pad_ndims = padding.size() / 2;
|
|
|
|
if(use_upper)
|
|
{
|
|
padding[i] = pad / 2;
|
|
padding[i + pad_ndims] = pad - pad / 2;
|
|
}
|
|
else
|
|
{
|
|
padding[i + pad_ndims] = pad / 2;
|
|
padding[i] = pad - pad / 2;
|
|
}
|
|
}
|
|
return padding;
|
|
}
|
|
|
|
/**
|
|
* Calculate the correct output shape for a convolution with
|
|
* a given input size and other parameters.
|
|
*
|
|
*/
|
|
shape compute_padded_shape(const shape& input,
|
|
const shape& weights,
|
|
const std::vector<std::size_t>& padding,
|
|
const std::vector<std::size_t>& stride,
|
|
const std::vector<std::size_t>& dilation)
|
|
{
|
|
const size_t num_spatial_dims = input.lens().size() - 2;
|
|
|
|
std::vector<size_t> output_lens{input.lens()[0], weights.lens()[0]};
|
|
// calculate the output shape of the convolution: ((W - K + 2P) / S) + 1
|
|
for(size_t i = 0; i < num_spatial_dims; ++i)
|
|
{
|
|
auto padding_factor = padding[i] + padding[i + num_spatial_dims];
|
|
output_lens.push_back(std::size_t(std::max<std::ptrdiff_t>(
|
|
1,
|
|
(input.lens()[i + 2] - (1 + dilation[i] * (weights.lens()[i + 2] - 1)) +
|
|
padding_factor) /
|
|
stride[i] +
|
|
1)));
|
|
}
|
|
return input.with_lens(output_lens);
|
|
}
|
|
|
|
/**
|
|
* Calculate the correct output shape for a pooling with
|
|
* a given input size and other parameters. This uses
|
|
* the same formula for pooling that compute_padded_shape() uses
|
|
* for convolutions, but takes slightly different inputs.
|
|
*
|
|
*/
|
|
shape compute_padded_pool_shape(const shape& input,
|
|
const shape& kernel,
|
|
const std::vector<std::size_t>& padding,
|
|
const std::vector<std::size_t>& stride,
|
|
const std::vector<std::size_t>& dilation)
|
|
{
|
|
const size_t num_spatial_dims = input.lens().size() - 2;
|
|
|
|
std::vector<size_t> output_lens{input.lens()[0], input.lens()[1]};
|
|
// calculate the output shape of the pooling: ((W - K + 2P) / S) + 1
|
|
for(size_t i = 0; i < num_spatial_dims; ++i)
|
|
{
|
|
auto padding_factor = padding[i] + padding[i + num_spatial_dims];
|
|
output_lens.push_back(std::size_t(std::max<std::ptrdiff_t>(
|
|
1,
|
|
(input.lens()[i + 2] - (1 + dilation[i] * (kernel.lens()[i] - 1)) + padding_factor) /
|
|
stride[i] +
|
|
1)));
|
|
}
|
|
return input.with_lens(output_lens);
|
|
}
|
|
} // namespace MIGRAPHX_INLINE_NS
|
|
} // namespace migraphx
|