frigate/docker/rocm/migraphx/pad_calc.cpp

155 lines
6.1 KiB
C++
Raw Normal View History

2025-02-03 22:53:47 +03:00
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/pad_calc.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
void calculate_padding(int64_t idx,
std::vector<int64_t>& pads,
int64_t input_dim,
int64_t stride,
int64_t dilation,
int64_t weight_dim,
bool is_same_upper)
{
int64_t output_dim = (input_dim + stride - 1) / stride; // round up result
int64_t new_weight_dim = weight_dim + (weight_dim - 1) * (dilation - 1);
int64_t pad =
std::max(static_cast<int64_t>(0), (output_dim - 1) * stride + new_weight_dim - input_dim);
auto pad_ndims = pads.size() / 2;
if(is_same_upper)
{
pads[idx] = pad / 2;
pads[idx + pad_ndims] = pad - pad / 2;
}
else
{
pads[idx + pad_ndims] = pad / 2;
pads[idx] = pad - pad / 2;
}
}
/**
* Given the input array dimensions; kernel (wei_lens); strides; and dilations,
* calculate the padding value in each dimension.
*
*/
std::vector<std::size_t> calc_dyn_auto_pad(const std::vector<std::size_t>& input_lens,
const std::vector<std::size_t>& wei_lens,
const std::vector<std::size_t>& strides,
const std::vector<std::size_t>& dilations,
bool use_upper)
{
std::vector<std::size_t> padding;
assert(input_lens.size() >= 3);
assert(input_lens.size() == wei_lens.size());
std::size_t num_spatial_dims = input_lens.size() - 2;
padding.resize(2 * num_spatial_dims);
for(std::size_t i = 0; i < num_spatial_dims; i++)
{
std::ptrdiff_t input_dim = input_lens[i + 2];
std::ptrdiff_t stride = strides[i];
std::ptrdiff_t weight_dim = wei_lens[i + 2];
std::ptrdiff_t dilation = dilations[i];
std::ptrdiff_t output_dim = (input_dim + stride - 1) / stride; // round up result
std::ptrdiff_t new_weight_dim = weight_dim + (weight_dim - 1) * (dilation - 1);
std::size_t pad = std::max(static_cast<std::ptrdiff_t>(0),
(output_dim - 1) * stride + new_weight_dim - input_dim);
auto pad_ndims = padding.size() / 2;
if(use_upper)
{
padding[i] = pad / 2;
padding[i + pad_ndims] = pad - pad / 2;
}
else
{
padding[i + pad_ndims] = pad / 2;
padding[i] = pad - pad / 2;
}
}
return padding;
}
/**
* Calculate the correct output shape for a convolution with
* a given input size and other parameters.
*
*/
shape compute_padded_shape(const shape& input,
const shape& weights,
const std::vector<std::size_t>& padding,
const std::vector<std::size_t>& stride,
const std::vector<std::size_t>& dilation)
{
const size_t num_spatial_dims = input.lens().size() - 2;
std::vector<size_t> output_lens{input.lens()[0], weights.lens()[0]};
// calculate the output shape of the convolution: ((W - K + 2P) / S) + 1
for(size_t i = 0; i < num_spatial_dims; ++i)
{
auto padding_factor = padding[i] + padding[i + num_spatial_dims];
output_lens.push_back(std::size_t(std::max<std::ptrdiff_t>(
1,
(input.lens()[i + 2] - (1 + dilation[i] * (weights.lens()[i + 2] - 1)) +
padding_factor) /
stride[i] +
1)));
}
return input.with_lens(output_lens);
}
/**
* Calculate the correct output shape for a pooling with
* a given input size and other parameters. This uses
* the same formula for pooling that compute_padded_shape() uses
* for convolutions, but takes slightly different inputs.
*
*/
shape compute_padded_pool_shape(const shape& input,
const shape& kernel,
const std::vector<std::size_t>& padding,
const std::vector<std::size_t>& stride,
const std::vector<std::size_t>& dilation)
{
const size_t num_spatial_dims = input.lens().size() - 2;
std::vector<size_t> output_lens{input.lens()[0], input.lens()[1]};
// calculate the output shape of the pooling: ((W - K + 2P) / S) + 1
for(size_t i = 0; i < num_spatial_dims; ++i)
{
auto padding_factor = padding[i] + padding[i + num_spatial_dims];
output_lens.push_back(std::size_t(std::max<std::ptrdiff_t>(
1,
(input.lens()[i + 2] - (1 + dilation[i] * (kernel.lens()[i] - 1)) + padding_factor) /
stride[i] +
1)));
}
return input.with_lens(output_lens);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx