mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-18 09:04:28 +03:00
cleanup embeddings inferences
This commit is contained in:
parent
3faadb633d
commit
ccf8848143
@ -1,6 +1,7 @@
|
||||
"""SQLite-vec embeddings database."""
|
||||
|
||||
import base64
|
||||
import datetime
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
@ -21,6 +22,7 @@ from frigate.types import ModelStatusTypesEnum
|
||||
from frigate.util.builtin import serialize
|
||||
|
||||
from .functions.onnx import GenericONNXEmbedding, ModelTypeEnum
|
||||
from .types import EmbeddingsMetrics
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -59,9 +61,15 @@ def get_metadata(event: Event) -> dict:
|
||||
class Embeddings:
|
||||
"""SQLite-vec embeddings database."""
|
||||
|
||||
def __init__(self, config: FrigateConfig, db: SqliteVecQueueDatabase) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
config: FrigateConfig,
|
||||
db: SqliteVecQueueDatabase,
|
||||
metrics: EmbeddingsMetrics,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.db = db
|
||||
self.metrics = metrics
|
||||
self.requestor = InterProcessRequestor()
|
||||
|
||||
# Create tables if they don't exist
|
||||
@ -173,6 +181,7 @@ class Embeddings:
|
||||
@param: thumbnail bytes in jpg format
|
||||
@param: upsert If embedding should be upserted into vec DB
|
||||
"""
|
||||
start = datetime.datetime.now().timestamp()
|
||||
# Convert thumbnail bytes to PIL Image
|
||||
embedding = self.vision_embedding([thumbnail])[0]
|
||||
|
||||
@ -185,6 +194,11 @@ class Embeddings:
|
||||
(event_id, serialize(embedding)),
|
||||
)
|
||||
|
||||
duration = datetime.datetime.now().timestamp() - start
|
||||
self.metrics.image_embeddings_fps.value = (
|
||||
self.metrics.image_embeddings_fps.value * 9 + duration
|
||||
) / 10
|
||||
|
||||
return embedding
|
||||
|
||||
def batch_embed_thumbnail(
|
||||
@ -195,6 +209,7 @@ class Embeddings:
|
||||
@param: event_thumbs Map of Event IDs in DB to thumbnail bytes in jpg format
|
||||
@param: upsert If embedding should be upserted into vec DB
|
||||
"""
|
||||
start = datetime.datetime.now().timestamp()
|
||||
ids = list(event_thumbs.keys())
|
||||
embeddings = self.vision_embedding(list(event_thumbs.values()))
|
||||
|
||||
@ -213,11 +228,17 @@ class Embeddings:
|
||||
items,
|
||||
)
|
||||
|
||||
duration = datetime.datetime.now().timestamp() - start
|
||||
self.metrics.text_embeddings_sps.value = (
|
||||
self.metrics.text_embeddings_sps.value * 9 + (duration / len(ids))
|
||||
) / 10
|
||||
|
||||
return embeddings
|
||||
|
||||
def embed_description(
|
||||
self, event_id: str, description: str, upsert: bool = True
|
||||
) -> ndarray:
|
||||
start = datetime.datetime.now().timestamp()
|
||||
embedding = self.text_embedding([description])[0]
|
||||
|
||||
if upsert:
|
||||
@ -229,11 +250,17 @@ class Embeddings:
|
||||
(event_id, serialize(embedding)),
|
||||
)
|
||||
|
||||
duration = datetime.datetime.now().timestamp() - start
|
||||
self.metrics.text_embeddings_sps.value = (
|
||||
self.metrics.text_embeddings_sps.value * 9 + duration
|
||||
) / 10
|
||||
|
||||
return embedding
|
||||
|
||||
def batch_embed_description(
|
||||
self, event_descriptions: dict[str, str], upsert: bool = True
|
||||
) -> ndarray:
|
||||
start = datetime.datetime.now().timestamp()
|
||||
# upsert embeddings one by one to avoid token limit
|
||||
embeddings = []
|
||||
|
||||
@ -256,6 +283,11 @@ class Embeddings:
|
||||
items,
|
||||
)
|
||||
|
||||
duration = datetime.datetime.now().timestamp() - start
|
||||
self.metrics.text_embeddings_sps.value = (
|
||||
self.metrics.text_embeddings_sps.value * 9 + (duration / len(ids))
|
||||
) / 10
|
||||
|
||||
return embeddings
|
||||
|
||||
def reindex(self) -> None:
|
||||
|
||||
@ -62,7 +62,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
super().__init__(name="embeddings_maintainer")
|
||||
self.config = config
|
||||
self.metrics = metrics
|
||||
self.embeddings = Embeddings(config, db)
|
||||
self.embeddings = Embeddings(config, db, metrics)
|
||||
|
||||
# Check if we need to re-index events
|
||||
if config.semantic_search.reindex:
|
||||
@ -139,7 +139,8 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
)
|
||||
elif topic == EmbeddingsRequestEnum.generate_search.value:
|
||||
return serialize(
|
||||
self.embeddings.text_embedding([data])[0], pack=False
|
||||
self.embeddings.embed_description("", data, upsert=False),
|
||||
pack=False,
|
||||
)
|
||||
elif topic == EmbeddingsRequestEnum.register_face.value:
|
||||
if not self.face_recognition_enabled:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user