Get stats for embeddings inferences

This commit is contained in:
Nicolas Mowen 2025-01-04 15:05:33 -07:00
parent fbcbb6b088
commit 3faadb633d
6 changed files with 89 additions and 15 deletions

View File

@ -41,6 +41,7 @@ from frigate.const import (
)
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
from frigate.embeddings import EmbeddingsContext, manage_embeddings
from frigate.embeddings.types import EmbeddingsMetrics
from frigate.events.audio import AudioProcessor
from frigate.events.cleanup import EventCleanup
from frigate.events.external import ExternalEventProcessor
@ -89,6 +90,9 @@ class FrigateApp:
self.detection_shms: list[mp.shared_memory.SharedMemory] = []
self.log_queue: Queue = mp.Queue()
self.camera_metrics: dict[str, CameraMetrics] = {}
self.embeddings_metrics: EmbeddingsMetrics | None = (
EmbeddingsMetrics() if config.semantic_search.enabled else None
)
self.ptz_metrics: dict[str, PTZMetrics] = {}
self.processes: dict[str, int] = {}
self.embeddings: Optional[EmbeddingsContext] = None
@ -235,7 +239,10 @@ class FrigateApp:
embedding_process = util.Process(
target=manage_embeddings,
name="embeddings_manager",
args=(self.config,),
args=(
self.config,
self.embeddings_metrics,
),
)
embedding_process.daemon = True
self.embedding_process = embedding_process
@ -497,7 +504,11 @@ class FrigateApp:
self.stats_emitter = StatsEmitter(
self.config,
stats_init(
self.config, self.camera_metrics, self.detectors, self.processes
self.config,
self.camera_metrics,
self.embeddings_metrics,
self.detectors,
self.processes,
),
self.stop_event,
)

View File

@ -21,12 +21,13 @@ from frigate.util.builtin import serialize
from frigate.util.services import listen
from .maintainer import EmbeddingMaintainer
from .types import EmbeddingsMetrics
from .util import ZScoreNormalization
logger = logging.getLogger(__name__)
def manage_embeddings(config: FrigateConfig) -> None:
def manage_embeddings(config: FrigateConfig, metrics: EmbeddingsMetrics) -> None:
# Only initialize embeddings if semantic search is enabled
if not config.semantic_search.enabled:
return
@ -60,6 +61,7 @@ def manage_embeddings(config: FrigateConfig) -> None:
maintainer = EmbeddingMaintainer(
db,
config,
metrics,
stop_event,
)
maintainer.start()

View File

@ -1,6 +1,7 @@
"""Maintain embeddings in SQLite-vec."""
import base64
import datetime
import logging
import os
import random
@ -41,6 +42,7 @@ from frigate.util.image import SharedMemoryFrameManager, area, calculate_region
from frigate.util.model import FaceClassificationModel
from .embeddings import Embeddings
from .types import EmbeddingsMetrics
logger = logging.getLogger(__name__)
@ -54,10 +56,12 @@ class EmbeddingMaintainer(threading.Thread):
self,
db: SqliteQueueDatabase,
config: FrigateConfig,
metrics: EmbeddingsMetrics,
stop_event: MpEvent,
) -> None:
super().__init__(name="embeddings_maintainer")
self.config = config
self.metrics = metrics
self.embeddings = Embeddings(config, db)
# Check if we need to re-index events
@ -219,10 +223,22 @@ class EmbeddingMaintainer(threading.Thread):
return
if self.face_recognition_enabled:
self._process_face(data, yuv_frame)
start = datetime.datetime.now().timestamp()
processed = self._process_face(data, yuv_frame)
if processed:
duration = datetime.datetime.now().timestamp() - start
self.metrics.face_rec_fps.value = (
self.metrics.face_rec_fps.value * 9 + duration
) / 10
if self.lpr_config.enabled:
start = datetime.datetime.now().timestamp()
self._process_license_plate(data, yuv_frame)
duration = datetime.datetime.now().timestamp() - start
self.metrics.alpr_pps.value = (
self.metrics.alpr_pps.value * 9 + duration
) / 10
# no need to save our own thumbnails if genai is not enabled
# or if the object has become stationary
@ -402,14 +418,14 @@ class EmbeddingMaintainer(threading.Thread):
return face
def _process_face(self, obj_data: dict[str, any], frame: np.ndarray) -> None:
def _process_face(self, obj_data: dict[str, any], frame: np.ndarray) -> bool:
"""Look for faces in image."""
id = obj_data["id"]
# don't run for non person objects
if obj_data.get("label") != "person":
logger.debug("Not a processing face for non person object.")
return
return False
# don't overwrite sub label for objects that have a sub label
# that is not a face
@ -417,7 +433,7 @@ class EmbeddingMaintainer(threading.Thread):
logger.debug(
f"Not processing face due to existing sub label: {obj_data.get('sub_label')}."
)
return
return False
face: Optional[dict[str, any]] = None
@ -426,7 +442,7 @@ class EmbeddingMaintainer(threading.Thread):
person_box = obj_data.get("box")
if not person_box:
return None
return False
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
left, top, right, bottom = person_box
@ -435,7 +451,7 @@ class EmbeddingMaintainer(threading.Thread):
if not face_box:
logger.debug("Detected no faces for person object.")
return
return False
margin = int((face_box[2] - face_box[0]) * 0.25)
face_frame = person[
@ -451,7 +467,7 @@ class EmbeddingMaintainer(threading.Thread):
# don't run for object without attributes
if not obj_data.get("current_attributes"):
logger.debug("No attributes to parse.")
return
return False
attributes: list[dict[str, any]] = obj_data.get("current_attributes", [])
for attr in attributes:
@ -463,14 +479,14 @@ class EmbeddingMaintainer(threading.Thread):
# no faces detected in this frame
if not face:
return
return False
face_box = face.get("box")
# check that face is valid
if not face_box or area(face_box) < self.config.face_recognition.min_area:
logger.debug(f"Invalid face box {face}")
return
return False
face_frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
margin = int((face_box[2] - face_box[0]) * 0.25)
@ -487,7 +503,7 @@ class EmbeddingMaintainer(threading.Thread):
res = self.face_classifier.classify_face(face_frame)
if not res:
return
return False
sub_label, score = res
@ -512,13 +528,13 @@ class EmbeddingMaintainer(threading.Thread):
logger.debug(
f"Recognized face distance {score} is less than threshold {self.config.face_recognition.threshold}"
)
return
return True
if id in self.detected_faces and face_score <= self.detected_faces[id]:
logger.debug(
f"Recognized face distance {score} and overall score {face_score} is less than previous overall face score ({self.detected_faces.get(id)})."
)
return
return True
resp = requests.post(
f"{FRIGATE_LOCALHOST}/api/events/{id}/sub_label",
@ -532,6 +548,8 @@ class EmbeddingMaintainer(threading.Thread):
if resp.status_code == 200:
self.detected_faces[id] = face_score
return True
def _detect_license_plate(self, input: np.ndarray) -> tuple[int, int, int, int]:
"""Return the dimensions of the input image as [x, y, width, height]."""
height, width = input.shape[:2]

View File

@ -0,0 +1,17 @@
"""Embeddings types."""
import multiprocessing as mp
from multiprocessing.sharedctypes import Synchronized
class EmbeddingsMetrics:
image_embeddings_fps: Synchronized
text_embeddings_sps: Synchronized
face_rec_fps: Synchronized
alpr_pps: Synchronized
def __init__(self):
self.image_embeddings_fps = mp.Value("d", 0.01)
self.text_embeddings_sps = mp.Value("d", 0.01)
self.face_rec_fps = mp.Value("d", 0.01)
self.alpr_pps = mp.Value("d", 0.01)

View File

@ -14,6 +14,7 @@ from requests.exceptions import RequestException
from frigate.camera import CameraMetrics
from frigate.config import FrigateConfig
from frigate.const import CACHE_DIR, CLIPS_DIR, RECORD_DIR
from frigate.embeddings.types import EmbeddingsMetrics
from frigate.object_detection import ObjectDetectProcess
from frigate.types import StatsTrackingTypes
from frigate.util.services import (
@ -51,11 +52,13 @@ def get_latest_version(config: FrigateConfig) -> str:
def stats_init(
config: FrigateConfig,
camera_metrics: dict[str, CameraMetrics],
embeddings_metrics: EmbeddingsMetrics | None,
detectors: dict[str, ObjectDetectProcess],
processes: dict[str, int],
) -> StatsTrackingTypes:
stats_tracking: StatsTrackingTypes = {
"camera_metrics": camera_metrics,
"embeddings_metrics": embeddings_metrics,
"detectors": detectors,
"started": int(time.time()),
"latest_frigate_version": get_latest_version(config),
@ -279,6 +282,27 @@ def stats_snapshot(
}
stats["detection_fps"] = round(total_detection_fps, 2)
if config.semantic_search.enabled:
embeddings_metrics = stats_tracking["embeddings_metrics"]
stats["embeddings"] = {
"image_embedding_speed": round(
embeddings_metrics.image_embeddings_fps.value * 1000, 2
),
"text_embedding_speed": round(
embeddings_metrics.text_embeddings_sps.value * 1000, 2
),
}
if config.face_recognition.enabled:
stats["embeddings"]["face_recognition_speed"] = round(
embeddings_metrics.face_rec_fps.value * 1000, 2
)
if config.lpr.enabled:
stats["embeddings"]["plate_recognition_speed"] = round(
embeddings_metrics.alpr_pps.value * 1000, 2
)
get_processing_stats(config, stats, hwaccel_errors)
stats["service"] = {

View File

@ -2,11 +2,13 @@ from enum import Enum
from typing import TypedDict
from frigate.camera import CameraMetrics
from frigate.embeddings.types import EmbeddingsMetrics
from frigate.object_detection import ObjectDetectProcess
class StatsTrackingTypes(TypedDict):
camera_metrics: dict[str, CameraMetrics]
embeddings_metrics: EmbeddingsMetrics | None
detectors: dict[str, ObjectDetectProcess]
started: int
latest_frigate_version: str