mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 13:34:13 +03:00
Modify the document based on review suggestions
This commit is contained in:
parent
438df7d484
commit
b4abbd7d3b
@ -1104,41 +1104,6 @@ model: # required
|
|||||||
labelmap_path: /labelmap/coco-80.txt # required
|
labelmap_path: /labelmap/coco-80.txt # required
|
||||||
```
|
```
|
||||||
|
|
||||||
## AXERA
|
|
||||||
|
|
||||||
Hardware accelerated object detection is supported on the following SoCs:
|
|
||||||
|
|
||||||
- AX650N
|
|
||||||
- AX8850N
|
|
||||||
|
|
||||||
This implementation uses the [AXera Pulsar2 Toolchain](https://huggingface.co/AXERA-TECH/Pulsar2).
|
|
||||||
|
|
||||||
See the [installation docs](../frigate/installation.md#axera) for information on configuring the AXEngine hardware.
|
|
||||||
|
|
||||||
### Configuration
|
|
||||||
|
|
||||||
When configuring the AXEngine detector, you have to specify the model name.
|
|
||||||
|
|
||||||
#### yolov9
|
|
||||||
|
|
||||||
A yolov9 model is provided in the container at /axmodels and is used by this detector type by default.
|
|
||||||
|
|
||||||
Use the model configuration shown below when using the axengine detector with the default axmodel:
|
|
||||||
|
|
||||||
```yaml
|
|
||||||
detectors: # required
|
|
||||||
axengine: # required
|
|
||||||
type: axengine # required
|
|
||||||
|
|
||||||
model: # required
|
|
||||||
path: frigate-yolov9-tiny # required
|
|
||||||
model_type: yolo-generic # required
|
|
||||||
width: 320 # required
|
|
||||||
height: 320 # required
|
|
||||||
tensor_format: bgr # required
|
|
||||||
labelmap_path: /labelmap/coco-80.txt # required
|
|
||||||
```
|
|
||||||
|
|
||||||
## Rockchip platform
|
## Rockchip platform
|
||||||
|
|
||||||
Hardware accelerated object detection is supported on the following SoCs:
|
Hardware accelerated object detection is supported on the following SoCs:
|
||||||
@ -1403,6 +1368,41 @@ model:
|
|||||||
input_pixel_format: rgb/bgr # look at the model.json to figure out which to put here
|
input_pixel_format: rgb/bgr # look at the model.json to figure out which to put here
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## AXERA
|
||||||
|
|
||||||
|
Hardware accelerated object detection is supported on the following SoCs:
|
||||||
|
|
||||||
|
- AX650N
|
||||||
|
- AX8850N
|
||||||
|
|
||||||
|
This implementation uses the [AXera Pulsar2 Toolchain](https://huggingface.co/AXERA-TECH/Pulsar2).
|
||||||
|
|
||||||
|
See the [installation docs](../frigate/installation.md#axera) for information on configuring the AXEngine hardware.
|
||||||
|
|
||||||
|
### Configuration
|
||||||
|
|
||||||
|
When configuring the AXEngine detector, you have to specify the model name.
|
||||||
|
|
||||||
|
#### yolov9
|
||||||
|
|
||||||
|
A yolov9 model is provided in the container at /axmodels and is used by this detector type by default.
|
||||||
|
|
||||||
|
Use the model configuration shown below when using the axengine detector with the default axmodel:
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
detectors:
|
||||||
|
axengine:
|
||||||
|
type: axengine
|
||||||
|
|
||||||
|
model:
|
||||||
|
path: frigate-yolov9-tiny
|
||||||
|
model_type: yolo-generic
|
||||||
|
width: 320
|
||||||
|
height: 320
|
||||||
|
tensor_format: bgr
|
||||||
|
labelmap_path: /labelmap/coco-80.txt
|
||||||
|
```
|
||||||
|
|
||||||
# Models
|
# Models
|
||||||
|
|
||||||
Some model types are not included in Frigate by default.
|
Some model types are not included in Frigate by default.
|
||||||
|
|||||||
@ -289,6 +289,8 @@ Next, you should configure [hardware object detection](/configuration/object_det
|
|||||||
|
|
||||||
### AXERA
|
### AXERA
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>AXERA accelerators</summary>
|
||||||
AXERA accelerators are available in an M.2 form factor, compatible with both Raspberry Pi and Orange Pi. This form factor has also been successfully tested on x86 platforms, making it a versatile choice for various computing environments.
|
AXERA accelerators are available in an M.2 form factor, compatible with both Raspberry Pi and Orange Pi. This form factor has also been successfully tested on x86 platforms, making it a versatile choice for various computing environments.
|
||||||
|
|
||||||
#### Installation
|
#### Installation
|
||||||
@ -319,7 +321,7 @@ If you are using `docker run`, add this option to your command `--device /dev/ax
|
|||||||
#### Configuration
|
#### Configuration
|
||||||
|
|
||||||
Finally, configure [hardware object detection](/configuration/object_detectors#axera) to complete the setup.
|
Finally, configure [hardware object detection](/configuration/object_detectors#axera) to complete the setup.
|
||||||
|
</details>
|
||||||
|
|
||||||
## Docker
|
## Docker
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user