diff --git a/docs/docs/configuration/object_detectors.md b/docs/docs/configuration/object_detectors.md index 88b015c34..7351ef6f4 100644 --- a/docs/docs/configuration/object_detectors.md +++ b/docs/docs/configuration/object_detectors.md @@ -1104,41 +1104,6 @@ model: # required labelmap_path: /labelmap/coco-80.txt # required ``` -## AXERA - -Hardware accelerated object detection is supported on the following SoCs: - -- AX650N -- AX8850N - -This implementation uses the [AXera Pulsar2 Toolchain](https://huggingface.co/AXERA-TECH/Pulsar2). - -See the [installation docs](../frigate/installation.md#axera) for information on configuring the AXEngine hardware. - -### Configuration - -When configuring the AXEngine detector, you have to specify the model name. - -#### yolov9 - -A yolov9 model is provided in the container at /axmodels and is used by this detector type by default. - -Use the model configuration shown below when using the axengine detector with the default axmodel: - -```yaml -detectors: # required - axengine: # required - type: axengine # required - -model: # required - path: frigate-yolov9-tiny # required - model_type: yolo-generic # required - width: 320 # required - height: 320 # required - tensor_format: bgr # required - labelmap_path: /labelmap/coco-80.txt # required -``` - ## Rockchip platform Hardware accelerated object detection is supported on the following SoCs: @@ -1403,6 +1368,41 @@ model: input_pixel_format: rgb/bgr # look at the model.json to figure out which to put here ``` +## AXERA + +Hardware accelerated object detection is supported on the following SoCs: + +- AX650N +- AX8850N + +This implementation uses the [AXera Pulsar2 Toolchain](https://huggingface.co/AXERA-TECH/Pulsar2). + +See the [installation docs](../frigate/installation.md#axera) for information on configuring the AXEngine hardware. + +### Configuration + +When configuring the AXEngine detector, you have to specify the model name. + +#### yolov9 + +A yolov9 model is provided in the container at /axmodels and is used by this detector type by default. + +Use the model configuration shown below when using the axengine detector with the default axmodel: + +```yaml +detectors: + axengine: + type: axengine + +model: + path: frigate-yolov9-tiny + model_type: yolo-generic + width: 320 + height: 320 + tensor_format: bgr + labelmap_path: /labelmap/coco-80.txt +``` + # Models Some model types are not included in Frigate by default. diff --git a/docs/docs/frigate/installation.md b/docs/docs/frigate/installation.md index 281f87956..4622f68be 100644 --- a/docs/docs/frigate/installation.md +++ b/docs/docs/frigate/installation.md @@ -289,6 +289,8 @@ Next, you should configure [hardware object detection](/configuration/object_det ### AXERA +
+AXERA accelerators AXERA accelerators are available in an M.2 form factor, compatible with both Raspberry Pi and Orange Pi. This form factor has also been successfully tested on x86 platforms, making it a versatile choice for various computing environments. #### Installation @@ -319,7 +321,7 @@ If you are using `docker run`, add this option to your command `--device /dev/ax #### Configuration Finally, configure [hardware object detection](/configuration/object_detectors#axera) to complete the setup. - +
## Docker