mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-08 04:05:26 +03:00
scratched rocm docs from any mention of edgetpu or openvino
This commit is contained in:
parent
d0a882408d
commit
755fbbc4f7
@ -515,10 +515,8 @@ services:
|
||||
|
||||
Download can be triggered also in regular frigate builds using that environment variable. The following files will be available under `/config/model_cache/yolov8/`:
|
||||
|
||||
- `yolov8[ns]_320x320.onnx` -- nano (n) and small (s) sized floating point model files usable by the `rocm`, `onnx` and `openvino` detectors that have been trained using the coco dataset (90 classes)
|
||||
- `yolov8[ns]-oiv7_320x320.onnx` -- floating point model files usable by the `rocm`, `onnx` and `openvino` detectors that have been trained using the google open images v7 dataset (601 classes)
|
||||
- `yolov8[ns]-320x320_edgetpu.tflite` and `yolov8[ns]-oiv7_320x320_edgetpu.tflite` -- int8 quantized model files usable by the google coral `edgetpu` detector
|
||||
- `yolov8[ns]_320x320_i8_openvino.xml` and `yolov8[ns]-oiv7_320x320_i8_openvino.xml` -- int8 quantized model files usable by the `openvino` detector
|
||||
- `yolov8[ns]_320x320.onnx` -- nano (n) and small (s) sized floating point model files usable by the `rocm` and `onnx` detectors that have been trained using the coco dataset (90 classes)
|
||||
- `yolov8[ns]-oiv7_320x320.onnx` -- floating point model files usable by the `rocm` and `onnx` detectors that have been trained using the google open images v7 dataset (601 classes)
|
||||
- `labels.txt` and `labels-frigate.txt` -- full and aggregated labels for the coco dataset models
|
||||
- `labels-oiv7.txt` and `labels-oiv7-frigate.txt` -- labels for the oiv7 dataset models
|
||||
|
||||
@ -550,30 +548,6 @@ Other settings available for the rocm detector
|
||||
- `conserve_cpu: True` -- run ROCm/HIP synchronization in blocking mode saving CPU (at small loss of latency and maximum throughput)
|
||||
- `auto_override_gfx: True` -- enable or disable automatic gfx driver detection
|
||||
|
||||
#### Advanced configuration
|
||||
|
||||
One can configure several types of detectors to run in parallel to increase detection capacity. An example configuration running `rocm`, `edgetpu` and `openvino` in parallel:
|
||||
|
||||
```yaml
|
||||
model:
|
||||
labelmap_path: /config/model_cache/yolov8/labels-oiv7-frigate.txt
|
||||
model_type: yolov8
|
||||
detectors:
|
||||
rocm:
|
||||
type: rocm
|
||||
model:
|
||||
path: /config/model_cache/yolov8/yolov8s-oiv7_320x320.onnx
|
||||
coral:
|
||||
type: edgetpu
|
||||
device: usb
|
||||
model:
|
||||
path: /config/model_cache/yolov8/yolov8s-oiv7_320x320_edgetpu.tflite
|
||||
openvino:
|
||||
type: openvino
|
||||
model:
|
||||
path: /config/model_cache/yolov8/yolov8s-oiv7_320x320_i8_openvino.xml
|
||||
```
|
||||
|
||||
### Expected performance
|
||||
|
||||
On an AMD Ryzen 3 5400U with integrated GPU one can expect getting about 120fps detections with yolov8n and 60fps with yolov8s (320x320).
|
||||
|
||||
Loading…
Reference in New Issue
Block a user