diff --git a/docs/docs/configuration/object_detectors.md b/docs/docs/configuration/object_detectors.md index b4224c77b..ceddebfec 100644 --- a/docs/docs/configuration/object_detectors.md +++ b/docs/docs/configuration/object_detectors.md @@ -515,10 +515,8 @@ services: Download can be triggered also in regular frigate builds using that environment variable. The following files will be available under `/config/model_cache/yolov8/`: -- `yolov8[ns]_320x320.onnx` -- nano (n) and small (s) sized floating point model files usable by the `rocm`, `onnx` and `openvino` detectors that have been trained using the coco dataset (90 classes) -- `yolov8[ns]-oiv7_320x320.onnx` -- floating point model files usable by the `rocm`, `onnx` and `openvino` detectors that have been trained using the google open images v7 dataset (601 classes) -- `yolov8[ns]-320x320_edgetpu.tflite` and `yolov8[ns]-oiv7_320x320_edgetpu.tflite` -- int8 quantized model files usable by the google coral `edgetpu` detector -- `yolov8[ns]_320x320_i8_openvino.xml` and `yolov8[ns]-oiv7_320x320_i8_openvino.xml` -- int8 quantized model files usable by the `openvino` detector +- `yolov8[ns]_320x320.onnx` -- nano (n) and small (s) sized floating point model files usable by the `rocm` and `onnx` detectors that have been trained using the coco dataset (90 classes) +- `yolov8[ns]-oiv7_320x320.onnx` -- floating point model files usable by the `rocm` and `onnx` detectors that have been trained using the google open images v7 dataset (601 classes) - `labels.txt` and `labels-frigate.txt` -- full and aggregated labels for the coco dataset models - `labels-oiv7.txt` and `labels-oiv7-frigate.txt` -- labels for the oiv7 dataset models @@ -550,30 +548,6 @@ Other settings available for the rocm detector - `conserve_cpu: True` -- run ROCm/HIP synchronization in blocking mode saving CPU (at small loss of latency and maximum throughput) - `auto_override_gfx: True` -- enable or disable automatic gfx driver detection -#### Advanced configuration - -One can configure several types of detectors to run in parallel to increase detection capacity. An example configuration running `rocm`, `edgetpu` and `openvino` in parallel: - -```yaml -model: - labelmap_path: /config/model_cache/yolov8/labels-oiv7-frigate.txt - model_type: yolov8 -detectors: - rocm: - type: rocm - model: - path: /config/model_cache/yolov8/yolov8s-oiv7_320x320.onnx - coral: - type: edgetpu - device: usb - model: - path: /config/model_cache/yolov8/yolov8s-oiv7_320x320_edgetpu.tflite - openvino: - type: openvino - model: - path: /config/model_cache/yolov8/yolov8s-oiv7_320x320_i8_openvino.xml -``` - ### Expected performance On an AMD Ryzen 3 5400U with integrated GPU one can expect getting about 120fps detections with yolov8n and 60fps with yolov8s (320x320).