mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-08 12:15:25 +03:00
applied ruff formating
This commit is contained in:
parent
8c96d3a02c
commit
128ed4d2bb
@ -17,9 +17,11 @@ logger = logging.getLogger(__name__)
|
|||||||
|
|
||||||
DETECTOR_KEY = "onnx"
|
DETECTOR_KEY = "onnx"
|
||||||
|
|
||||||
|
|
||||||
class ONNXDetectorConfig(BaseDetectorConfig):
|
class ONNXDetectorConfig(BaseDetectorConfig):
|
||||||
type: Literal[DETECTOR_KEY]
|
type: Literal[DETECTOR_KEY]
|
||||||
|
|
||||||
|
|
||||||
class ONNXDetector(DetectionApi):
|
class ONNXDetector(DetectionApi):
|
||||||
type_key = DETECTOR_KEY
|
type_key = DETECTOR_KEY
|
||||||
|
|
||||||
@ -34,12 +36,23 @@ class ONNXDetector(DetectionApi):
|
|||||||
)
|
)
|
||||||
raise
|
raise
|
||||||
|
|
||||||
assert detector_config.model.model_type == 'yolov8', "ONNX: detector_config.model.model_type: only yolov8 supported"
|
assert (
|
||||||
assert detector_config.model.input_tensor == 'nhwc', "ONNX: detector_config.model.input_tensor: only nhwc supported"
|
detector_config.model.model_type == "yolov8"
|
||||||
if detector_config.model.input_pixel_format != 'rgb':
|
), "ONNX: detector_config.model.model_type: only yolov8 supported"
|
||||||
logger.warn("ONNX: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!")
|
assert (
|
||||||
|
detector_config.model.input_tensor == "nhwc"
|
||||||
|
), "ONNX: detector_config.model.input_tensor: only nhwc supported"
|
||||||
|
if detector_config.model.input_pixel_format != "rgb":
|
||||||
|
logger.warn(
|
||||||
|
"ONNX: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!"
|
||||||
|
)
|
||||||
|
|
||||||
assert detector_config.model.path is not None, "ONNX: No model.path configured, please configure model.path and model.labelmap_path; some suggestions: " + ', '.join(glob.glob("/config/model_cache/yolov8/*.onnx")) + " and " + ', '.join(glob.glob("/config/model_cache/yolov8/*_labels.txt"))
|
assert detector_config.model.path is not None, (
|
||||||
|
"ONNX: No model.path configured, please configure model.path and model.labelmap_path; some suggestions: "
|
||||||
|
+ ", ".join(glob.glob("/config/model_cache/yolov8/*.onnx"))
|
||||||
|
+ " and "
|
||||||
|
+ ", ".join(glob.glob("/config/model_cache/yolov8/*_labels.txt"))
|
||||||
|
)
|
||||||
|
|
||||||
path = detector_config.model.path
|
path = detector_config.model.path
|
||||||
logger.info(f"ONNX: loading {detector_config.model.path}")
|
logger.info(f"ONNX: loading {detector_config.model.path}")
|
||||||
@ -55,4 +68,3 @@ class ONNXDetector(DetectionApi):
|
|||||||
tensor_output = self.model.run(None, {model_input_name: tensor_input})[0]
|
tensor_output = self.model.run(None, {model_input_name: tensor_input})[0]
|
||||||
|
|
||||||
return yolov8_postprocess(model_input_shape, tensor_output)
|
return yolov8_postprocess(model_input_shape, tensor_output)
|
||||||
|
|
||||||
|
|||||||
@ -18,33 +18,47 @@ logger = logging.getLogger(__name__)
|
|||||||
|
|
||||||
DETECTOR_KEY = "rocm"
|
DETECTOR_KEY = "rocm"
|
||||||
|
|
||||||
|
|
||||||
def detect_gfx_version():
|
def detect_gfx_version():
|
||||||
return subprocess.getoutput("unset HSA_OVERRIDE_GFX_VERSION && /opt/rocm/bin/rocminfo | grep gfx |head -1|awk '{print $2}'")
|
return subprocess.getoutput(
|
||||||
|
"unset HSA_OVERRIDE_GFX_VERSION && /opt/rocm/bin/rocminfo | grep gfx |head -1|awk '{print $2}'"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def auto_override_gfx_version():
|
def auto_override_gfx_version():
|
||||||
# If environment varialbe already in place, do not override
|
# If environment varialbe already in place, do not override
|
||||||
gfx_version = detect_gfx_version()
|
gfx_version = detect_gfx_version()
|
||||||
old_override = os.getenv('HSA_OVERRIDE_GFX_VERSION')
|
old_override = os.getenv("HSA_OVERRIDE_GFX_VERSION")
|
||||||
if old_override not in (None, ''):
|
if old_override not in (None, ""):
|
||||||
logger.warning(f"AMD/ROCm: detected {gfx_version} but HSA_OVERRIDE_GFX_VERSION already present ({old_override}), not overriding!")
|
logger.warning(
|
||||||
|
f"AMD/ROCm: detected {gfx_version} but HSA_OVERRIDE_GFX_VERSION already present ({old_override}), not overriding!"
|
||||||
|
)
|
||||||
return old_override
|
return old_override
|
||||||
mapping = {
|
mapping = {
|
||||||
'gfx90c': '9.0.0',
|
"gfx90c": "9.0.0",
|
||||||
'gfx1031': '10.3.0',
|
"gfx1031": "10.3.0",
|
||||||
'gfx1103': '11.0.0',
|
"gfx1103": "11.0.0",
|
||||||
}
|
}
|
||||||
override = mapping.get(gfx_version)
|
override = mapping.get(gfx_version)
|
||||||
if override is not None:
|
if override is not None:
|
||||||
logger.warning(f"AMD/ROCm: detected {gfx_version}, overriding HSA_OVERRIDE_GFX_VERSION={override}")
|
logger.warning(
|
||||||
os.putenv('HSA_OVERRIDE_GFX_VERSION', override)
|
f"AMD/ROCm: detected {gfx_version}, overriding HSA_OVERRIDE_GFX_VERSION={override}"
|
||||||
|
)
|
||||||
|
os.putenv("HSA_OVERRIDE_GFX_VERSION", override)
|
||||||
return override
|
return override
|
||||||
return ''
|
return ""
|
||||||
|
|
||||||
|
|
||||||
class ROCmDetectorConfig(BaseDetectorConfig):
|
class ROCmDetectorConfig(BaseDetectorConfig):
|
||||||
type: Literal[DETECTOR_KEY]
|
type: Literal[DETECTOR_KEY]
|
||||||
conserve_cpu: bool = Field(default=True, title="Conserve CPU at the expense of latency (and reduced max throughput)")
|
conserve_cpu: bool = Field(
|
||||||
auto_override_gfx: bool = Field(default=True, title="Automatically detect and override gfx version")
|
default=True,
|
||||||
|
title="Conserve CPU at the expense of latency (and reduced max throughput)",
|
||||||
|
)
|
||||||
|
auto_override_gfx: bool = Field(
|
||||||
|
default=True, title="Automatically detect and override gfx version"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class ROCmDetector(DetectionApi):
|
class ROCmDetector(DetectionApi):
|
||||||
type_key = DETECTOR_KEY
|
type_key = DETECTOR_KEY
|
||||||
@ -59,24 +73,33 @@ class ROCmDetector(DetectionApi):
|
|||||||
|
|
||||||
logger.info(f"AMD/ROCm: loaded migraphx module")
|
logger.info(f"AMD/ROCm: loaded migraphx module")
|
||||||
except ModuleNotFoundError:
|
except ModuleNotFoundError:
|
||||||
logger.error(
|
logger.error("AMD/ROCm: module loading failed, missing ROCm environment?")
|
||||||
"AMD/ROCm: module loading failed, missing ROCm environment?"
|
|
||||||
)
|
|
||||||
raise
|
raise
|
||||||
|
|
||||||
if detector_config.conserve_cpu:
|
if detector_config.conserve_cpu:
|
||||||
logger.info(f"AMD/ROCm: switching HIP to blocking mode to conserve CPU")
|
logger.info(f"AMD/ROCm: switching HIP to blocking mode to conserve CPU")
|
||||||
ctypes.CDLL('/opt/rocm/lib/libamdhip64.so').hipSetDeviceFlags(4)
|
ctypes.CDLL("/opt/rocm/lib/libamdhip64.so").hipSetDeviceFlags(4)
|
||||||
assert detector_config.model.model_type == 'yolov8', "AMD/ROCm: detector_config.model.model_type: only yolov8 supported"
|
assert (
|
||||||
assert detector_config.model.input_tensor == 'nhwc', "AMD/ROCm: detector_config.model.input_tensor: only nhwc supported"
|
detector_config.model.model_type == "yolov8"
|
||||||
if detector_config.model.input_pixel_format != 'rgb':
|
), "AMD/ROCm: detector_config.model.model_type: only yolov8 supported"
|
||||||
logger.warn("AMD/ROCm: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!")
|
assert (
|
||||||
|
detector_config.model.input_tensor == "nhwc"
|
||||||
|
), "AMD/ROCm: detector_config.model.input_tensor: only nhwc supported"
|
||||||
|
if detector_config.model.input_pixel_format != "rgb":
|
||||||
|
logger.warn(
|
||||||
|
"AMD/ROCm: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!"
|
||||||
|
)
|
||||||
|
|
||||||
assert detector_config.model.path is not None, "No model.path configured, please configure model.path and model.labelmap_path; some suggestions: " + ', '.join(glob.glob("/config/model_cache/yolov8/*.onnx")) + " and " + ', '.join(glob.glob("/config/model_cache/yolov8/*_labels.txt"))
|
assert detector_config.model.path is not None, (
|
||||||
|
"No model.path configured, please configure model.path and model.labelmap_path; some suggestions: "
|
||||||
|
+ ", ".join(glob.glob("/config/model_cache/yolov8/*.onnx"))
|
||||||
|
+ " and "
|
||||||
|
+ ", ".join(glob.glob("/config/model_cache/yolov8/*_labels.txt"))
|
||||||
|
)
|
||||||
|
|
||||||
path = detector_config.model.path
|
path = detector_config.model.path
|
||||||
mxr_path = os.path.splitext(path)[0] + '.mxr'
|
mxr_path = os.path.splitext(path)[0] + ".mxr"
|
||||||
if path.endswith('.mxr'):
|
if path.endswith(".mxr"):
|
||||||
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
|
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
|
||||||
self.model = migraphx.load(mxr_path)
|
self.model = migraphx.load(mxr_path)
|
||||||
elif os.path.exists(mxr_path):
|
elif os.path.exists(mxr_path):
|
||||||
@ -84,30 +107,38 @@ class ROCmDetector(DetectionApi):
|
|||||||
self.model = migraphx.load(mxr_path)
|
self.model = migraphx.load(mxr_path)
|
||||||
else:
|
else:
|
||||||
logger.info(f"AMD/ROCm: loading model from {path}")
|
logger.info(f"AMD/ROCm: loading model from {path}")
|
||||||
if path.endswith('.onnx'):
|
if path.endswith(".onnx"):
|
||||||
self.model = migraphx.parse_onnx(path)
|
self.model = migraphx.parse_onnx(path)
|
||||||
elif path.endswith('.tf') or path.endswith('.tf2') or path.endswith('.tflite'):
|
elif (
|
||||||
|
path.endswith(".tf")
|
||||||
|
or path.endswith(".tf2")
|
||||||
|
or path.endswith(".tflite")
|
||||||
|
):
|
||||||
# untested
|
# untested
|
||||||
self.model = migraphx.parse_tf(path)
|
self.model = migraphx.parse_tf(path)
|
||||||
else:
|
else:
|
||||||
raise Exception(f"AMD/ROCm: unkown model format {path}")
|
raise Exception(f"AMD/ROCm: unkown model format {path}")
|
||||||
logger.info(f"AMD/ROCm: compiling the model")
|
logger.info(f"AMD/ROCm: compiling the model")
|
||||||
self.model.compile(migraphx.get_target('gpu'), offload_copy=True, fast_math=True)
|
self.model.compile(
|
||||||
|
migraphx.get_target("gpu"), offload_copy=True, fast_math=True
|
||||||
|
)
|
||||||
logger.info(f"AMD/ROCm: saving parsed model into {mxr_path}")
|
logger.info(f"AMD/ROCm: saving parsed model into {mxr_path}")
|
||||||
os.makedirs("/config/model_cache/rocm", exist_ok=True)
|
os.makedirs("/config/model_cache/rocm", exist_ok=True)
|
||||||
migraphx.save(self.model, mxr_path)
|
migraphx.save(self.model, mxr_path)
|
||||||
logger.info(f"AMD/ROCm: model loaded")
|
logger.info(f"AMD/ROCm: model loaded")
|
||||||
|
|
||||||
def detect_raw(self, tensor_input):
|
def detect_raw(self, tensor_input):
|
||||||
model_input_name = self.model.get_parameter_names()[0];
|
model_input_name = self.model.get_parameter_names()[0]
|
||||||
model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens());
|
model_input_shape = tuple(
|
||||||
|
self.model.get_parameter_shapes()[model_input_name].lens()
|
||||||
|
)
|
||||||
tensor_input = preprocess(tensor_input, model_input_shape, np.float32)
|
tensor_input = preprocess(tensor_input, model_input_shape, np.float32)
|
||||||
|
|
||||||
detector_result = self.model.run({model_input_name: tensor_input})[0]
|
detector_result = self.model.run({model_input_name: tensor_input})[0]
|
||||||
|
|
||||||
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
|
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
|
||||||
tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens())
|
tensor_output = np.ctypeslib.as_array(
|
||||||
|
addr, shape=detector_result.get_shape().lens()
|
||||||
|
)
|
||||||
|
|
||||||
return yolov8_postprocess(model_input_shape, tensor_output)
|
return yolov8_postprocess(model_input_shape, tensor_output)
|
||||||
|
|
||||||
|
|||||||
@ -5,30 +5,50 @@ import cv2
|
|||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def preprocess(tensor_input, model_input_shape, model_input_element_type):
|
def preprocess(tensor_input, model_input_shape, model_input_element_type):
|
||||||
model_input_shape = tuple(model_input_shape)
|
model_input_shape = tuple(model_input_shape)
|
||||||
assert tensor_input.dtype == np.uint8, f'tensor_input.dtype: {tensor_input.dtype}'
|
assert tensor_input.dtype == np.uint8, f"tensor_input.dtype: {tensor_input.dtype}"
|
||||||
if len(tensor_input.shape) == 3:
|
if len(tensor_input.shape) == 3:
|
||||||
tensor_input = tensor_input[np.newaxis, :]
|
tensor_input = tensor_input[np.newaxis, :]
|
||||||
if model_input_element_type == np.uint8:
|
if model_input_element_type == np.uint8:
|
||||||
# nothing to do for uint8 model input
|
# nothing to do for uint8 model input
|
||||||
assert model_input_shape == tensor_input.shape, f'model_input_shape: {model_input_shape}, tensor_input.shape: {tensor_input.shape}'
|
assert (
|
||||||
|
model_input_shape == tensor_input.shape
|
||||||
|
), f"model_input_shape: {model_input_shape}, tensor_input.shape: {tensor_input.shape}"
|
||||||
return tensor_input
|
return tensor_input
|
||||||
assert model_input_element_type == np.float32, f'model_input_element_type: {model_input_element_type}'
|
assert (
|
||||||
|
model_input_element_type == np.float32
|
||||||
|
), f"model_input_element_type: {model_input_element_type}"
|
||||||
# tensor_input must be nhwc
|
# tensor_input must be nhwc
|
||||||
assert tensor_input.shape[3] == 3, f'tensor_input.shape: {tensor_input.shape}'
|
assert tensor_input.shape[3] == 3, f"tensor_input.shape: {tensor_input.shape}"
|
||||||
if tensor_input.shape[1:3] != model_input_shape[2:4]:
|
if tensor_input.shape[1:3] != model_input_shape[2:4]:
|
||||||
logger.warn(f"preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!")
|
logger.warn(
|
||||||
|
f"preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!"
|
||||||
|
)
|
||||||
# cv2.dnn.blobFromImage is faster than numpying it
|
# cv2.dnn.blobFromImage is faster than numpying it
|
||||||
return cv2.dnn.blobFromImage(tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False)
|
return cv2.dnn.blobFromImage(
|
||||||
|
tensor_input[0],
|
||||||
|
1.0 / 255,
|
||||||
|
(model_input_shape[3], model_input_shape[2]),
|
||||||
|
None,
|
||||||
|
swapRB=False,
|
||||||
|
)
|
||||||
|
|
||||||
def yolov8_postprocess(model_input_shape, tensor_output, box_count = 20, score_threshold = 0.5, nms_threshold = 0.5):
|
|
||||||
|
def yolov8_postprocess(
|
||||||
|
model_input_shape,
|
||||||
|
tensor_output,
|
||||||
|
box_count=20,
|
||||||
|
score_threshold=0.5,
|
||||||
|
nms_threshold=0.5,
|
||||||
|
):
|
||||||
model_box_count = tensor_output.shape[2]
|
model_box_count = tensor_output.shape[2]
|
||||||
probs = tensor_output[0, 4:, :]
|
probs = tensor_output[0, 4:, :]
|
||||||
all_ids = np.argmax(probs, axis=0)
|
all_ids = np.argmax(probs, axis=0)
|
||||||
all_confidences = probs.T[np.arange(model_box_count), all_ids]
|
all_confidences = probs.T[np.arange(model_box_count), all_ids]
|
||||||
all_boxes = tensor_output[0, 0:4, :].T
|
all_boxes = tensor_output[0, 0:4, :].T
|
||||||
mask = (all_confidences > score_threshold)
|
mask = all_confidences > score_threshold
|
||||||
class_ids = all_ids[mask]
|
class_ids = all_ids[mask]
|
||||||
confidences = all_confidences[mask]
|
confidences = all_confidences[mask]
|
||||||
cx, cy, w, h = all_boxes[mask].T
|
cx, cy, w, h = all_boxes[mask].T
|
||||||
@ -37,7 +57,17 @@ def yolov8_postprocess(model_input_shape, tensor_output, box_count = 20, score_t
|
|||||||
scale_y, scale_x = 1 / model_input_shape[1], 1 / model_input_shape[2]
|
scale_y, scale_x = 1 / model_input_shape[1], 1 / model_input_shape[2]
|
||||||
else:
|
else:
|
||||||
scale_y, scale_x = 1 / model_input_shape[2], 1 / model_input_shape[3]
|
scale_y, scale_x = 1 / model_input_shape[2], 1 / model_input_shape[3]
|
||||||
detections = np.stack((class_ids, confidences, scale_y * (cy - h / 2), scale_x * (cx - w / 2), scale_y * (cy + h / 2), scale_x * (cx + w / 2)), axis=1)
|
detections = np.stack(
|
||||||
|
(
|
||||||
|
class_ids,
|
||||||
|
confidences,
|
||||||
|
scale_y * (cy - h / 2),
|
||||||
|
scale_x * (cx - w / 2),
|
||||||
|
scale_y * (cy + h / 2),
|
||||||
|
scale_x * (cx + w / 2),
|
||||||
|
),
|
||||||
|
axis=1,
|
||||||
|
)
|
||||||
if detections.shape[0] > box_count:
|
if detections.shape[0] > box_count:
|
||||||
# if too many detections, do nms filtering to suppress overlapping boxes
|
# if too many detections, do nms filtering to suppress overlapping boxes
|
||||||
boxes = np.stack((cx - w / 2, cy - h / 2, w, h), axis=1)
|
boxes = np.stack((cx - w / 2, cy - h / 2, w, h), axis=1)
|
||||||
@ -45,8 +75,9 @@ def yolov8_postprocess(model_input_shape, tensor_output, box_count = 20, score_t
|
|||||||
detections = detections[indexes]
|
detections = detections[indexes]
|
||||||
# if still too many, trim the rest by confidence
|
# if still too many, trim the rest by confidence
|
||||||
if detections.shape[0] > box_count:
|
if detections.shape[0] > box_count:
|
||||||
detections = detections[np.argpartition(detections[:,1], -box_count)[-box_count:]]
|
detections = detections[
|
||||||
|
np.argpartition(detections[:, 1], -box_count)[-box_count:]
|
||||||
|
]
|
||||||
detections = detections.copy()
|
detections = detections.copy()
|
||||||
detections.resize((box_count, 6))
|
detections.resize((box_count, 6))
|
||||||
return detections
|
return detections
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user