frigate/frigate/detectors/plugins/onnx.py
2024-02-09 17:00:23 +02:00

71 lines
2.3 KiB
Python

import logging
import sys
import os
import numpy as np
import ctypes
from pydantic import Field
from typing_extensions import Literal
import glob
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from frigate.detectors.util import preprocess, yolov8_postprocess
logger = logging.getLogger(__name__)
DETECTOR_KEY = "onnx"
class ONNXDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
class ONNXDetector(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, detector_config: ONNXDetectorConfig):
try:
import onnxruntime
logger.info(f"ONNX: loaded onnxruntime module")
except ModuleNotFoundError:
logger.error(
"ONNX: module loading failed, need 'pip install onnxruntime'?!?"
)
raise
assert (
detector_config.model.model_type == "yolov8"
), "ONNX: detector_config.model.model_type: only yolov8 supported"
assert (
detector_config.model.input_tensor == "nhwc"
), "ONNX: detector_config.model.input_tensor: only nhwc supported"
if detector_config.model.input_pixel_format != "rgb":
logger.warn(
"ONNX: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!"
)
assert detector_config.model.path is not None, (
"ONNX: No model.path configured, please configure model.path and model.labelmap_path; some suggestions: "
+ ", ".join(glob.glob("/config/model_cache/yolov8/*.onnx"))
+ " and "
+ ", ".join(glob.glob("/config/model_cache/yolov8/*_labels.txt"))
)
path = detector_config.model.path
logger.info(f"ONNX: loading {detector_config.model.path}")
self.model = onnxruntime.InferenceSession(path)
logger.info(f"ONNX: {path} loaded")
def detect_raw(self, tensor_input):
model_input_name = self.model.get_inputs()[0].name
model_input_shape = self.model.get_inputs()[0].shape
tensor_input = preprocess(tensor_input, model_input_shape, np.float32)
tensor_output = self.model.run(None, {model_input_name: tensor_input})[0]
return yolov8_postprocess(model_input_shape, tensor_output)