mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-13 06:35:24 +03:00
Merge 61a808869b into 47aecff567
This commit is contained in:
commit
03837bf1e5
@ -51,6 +51,9 @@ class ModelConfig(BaseModel):
|
||||
model_type: ModelTypeEnum = Field(
|
||||
default=ModelTypeEnum.ssd, title="Object Detection Model Type"
|
||||
)
|
||||
tfl_detector_output_tensor_order: list[int] = Field(
|
||||
default=[0,1,2,3], title="Order Output Tensors of TFL models [0=boxes,1=scores,2=class_ids,3=count]"
|
||||
)
|
||||
_merged_labelmap: Optional[Dict[int, str]] = PrivateAttr()
|
||||
_colormap: Dict[int, Tuple[int, int, int]] = PrivateAttr()
|
||||
_model_hash: str = PrivateAttr()
|
||||
|
||||
@ -37,15 +37,17 @@ class CpuTfl(DetectionApi):
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
|
||||
self.tfl_detector_output_tensor_order = detector_config.model.tfl_detector_output_tensor_order
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
||||
self.interpreter.invoke()
|
||||
|
||||
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
|
||||
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
|
||||
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
|
||||
boxes = self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[0]]["index"])()[0]
|
||||
class_ids = self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[1]]["index"])()[0]
|
||||
scores = self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[2]]["index"])()[0]
|
||||
count = int(
|
||||
self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
|
||||
self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[3]]["index"])()[0]
|
||||
)
|
||||
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
|
||||
@ -44,6 +44,7 @@ class EdgeTpuTfl(DetectionApi):
|
||||
model_path=detector_config.model.path,
|
||||
experimental_delegates=[edge_tpu_delegate],
|
||||
)
|
||||
self.tfl_detector_output_tensor_order = detector_config.model.tfl_detector_output_tensor_order
|
||||
except ValueError:
|
||||
logger.error(
|
||||
"No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors."
|
||||
@ -60,11 +61,11 @@ class EdgeTpuTfl(DetectionApi):
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
||||
self.interpreter.invoke()
|
||||
|
||||
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
|
||||
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
|
||||
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
|
||||
boxes = self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[0]]["index"])()[0]
|
||||
class_ids = self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[1]]["index"])()[0]
|
||||
scores = self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[2]]["index"])()[0]
|
||||
count = int(
|
||||
self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
|
||||
self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[3]]["index"])()[0]
|
||||
)
|
||||
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user