diff --git a/frigate/detectors/detector_config.py b/frigate/detectors/detector_config.py index d8c841f42..c7c974bcd 100644 --- a/frigate/detectors/detector_config.py +++ b/frigate/detectors/detector_config.py @@ -51,6 +51,9 @@ class ModelConfig(BaseModel): model_type: ModelTypeEnum = Field( default=ModelTypeEnum.ssd, title="Object Detection Model Type" ) + tfl_detector_output_tensor_order: list[int] = Field( + default=[0,1,2,3], title="Order Output Tensors of TFL models [0=boxes,1=scores,2=class_ids,3=count]" + ) _merged_labelmap: Optional[Dict[int, str]] = PrivateAttr() _colormap: Dict[int, Tuple[int, int, int]] = PrivateAttr() _model_hash: str = PrivateAttr() diff --git a/frigate/detectors/plugins/cpu_tfl.py b/frigate/detectors/plugins/cpu_tfl.py index 8a54363e1..9627494be 100644 --- a/frigate/detectors/plugins/cpu_tfl.py +++ b/frigate/detectors/plugins/cpu_tfl.py @@ -37,15 +37,17 @@ class CpuTfl(DetectionApi): self.tensor_input_details = self.interpreter.get_input_details() self.tensor_output_details = self.interpreter.get_output_details() + self.tfl_detector_output_tensor_order = detector_config.model.tfl_detector_output_tensor_order + def detect_raw(self, tensor_input): self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input) self.interpreter.invoke() - boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0] - class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0] - scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0] + boxes = self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[0]]["index"])()[0] + class_ids = self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[1]]["index"])()[0] + scores = self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[2]]["index"])()[0] count = int( - self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0] + self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[3]]["index"])()[0] ) detections = np.zeros((20, 6), np.float32) diff --git a/frigate/detectors/plugins/edgetpu_tfl.py b/frigate/detectors/plugins/edgetpu_tfl.py index c320bd89b..e2c7bc891 100644 --- a/frigate/detectors/plugins/edgetpu_tfl.py +++ b/frigate/detectors/plugins/edgetpu_tfl.py @@ -44,6 +44,7 @@ class EdgeTpuTfl(DetectionApi): model_path=detector_config.model.path, experimental_delegates=[edge_tpu_delegate], ) + self.tfl_detector_output_tensor_order = detector_config.model.tfl_detector_output_tensor_order except ValueError: logger.error( "No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors." @@ -60,11 +61,11 @@ class EdgeTpuTfl(DetectionApi): self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input) self.interpreter.invoke() - boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0] - class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0] - scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0] + boxes = self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[0]]["index"])()[0] + class_ids = self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[1]]["index"])()[0] + scores = self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[2]]["index"])()[0] count = int( - self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0] + self.interpreter.tensor(self.tensor_output_details[self.tfl_detector_output_tensor_order[3]]["index"])()[0] ) detections = np.zeros((20, 6), np.float32)