frigate/frigate/object_detection/base.py

412 lines
14 KiB
Python
Raw Normal View History

2020-02-16 06:07:54 +03:00
import datetime
2020-11-04 15:28:07 +03:00
import logging
import queue
import threading
import time
from abc import ABC, abstractmethod
from collections import deque
from multiprocessing import Queue, Value
from multiprocessing.synchronize import Event as MpEvent
2020-11-04 15:28:07 +03:00
2020-02-09 16:39:24 +03:00
import numpy as np
import zmq
from frigate.comms.object_detector_signaler import (
ObjectDetectorPublisher,
ObjectDetectorSubscriber,
)
from frigate.config import FrigateConfig
from frigate.const import PROCESS_PRIORITY_HIGH
from frigate.detectors import create_detector
from frigate.detectors.detector_config import (
BaseDetectorConfig,
InputDTypeEnum,
ModelConfig,
)
from frigate.util.builtin import EventsPerSecond, load_labels
from frigate.util.image import SharedMemoryFrameManager, UntrackedSharedMemory
from frigate.util.process import FrigateProcess
2020-02-09 16:39:24 +03:00
from .util import tensor_transform
2020-11-04 06:26:39 +03:00
logger = logging.getLogger(__name__)
2021-02-17 16:23:32 +03:00
class ObjectDetector(ABC):
@abstractmethod
def detect(self, tensor_input, threshold: float = 0.4):
pass
2021-02-17 16:23:32 +03:00
class BaseLocalDetector(ObjectDetector):
def __init__(
self,
detector_config: BaseDetectorConfig = None,
labels: str = None,
):
2020-09-13 15:46:38 +03:00
self.fps = EventsPerSecond()
if labels is None:
self.labels = {}
else:
self.labels = load_labels(labels)
if detector_config:
self.input_transform = tensor_transform(detector_config.model.input_tensor)
self.dtype = detector_config.model.input_dtype
else:
self.input_transform = None
self.dtype = InputDTypeEnum.int
self.detect_api = create_detector(detector_config)
2021-02-17 16:23:32 +03:00
def _transform_input(self, tensor_input: np.ndarray) -> np.ndarray:
if self.input_transform:
tensor_input = np.transpose(tensor_input, self.input_transform)
if self.dtype == InputDTypeEnum.float:
tensor_input = tensor_input.astype(np.float32)
tensor_input /= 255
elif self.dtype == InputDTypeEnum.float_denorm:
tensor_input = tensor_input.astype(np.float32)
return tensor_input
def detect(self, tensor_input: np.ndarray, threshold=0.4):
detections = []
raw_detections = self.detect_raw(tensor_input)
for d in raw_detections:
if int(d[0]) < 0 or int(d[0]) >= len(self.labels):
logger.warning(f"Raw Detect returned invalid label: {d}")
continue
if d[1] < threshold:
break
2021-02-17 16:23:32 +03:00
detections.append(
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
)
2020-09-13 15:46:38 +03:00
self.fps.update()
return detections
class LocalObjectDetector(BaseLocalDetector):
def detect_raw(self, tensor_input: np.ndarray):
tensor_input = self._transform_input(tensor_input)
return self.detect_api.detect_raw(tensor_input=tensor_input)
class AsyncLocalObjectDetector(BaseLocalDetector):
def async_send_input(self, tensor_input: np.ndarray, connection_id: str):
tensor_input = self._transform_input(tensor_input)
return self.detect_api.send_input(connection_id, tensor_input)
def async_receive_output(self):
return self.detect_api.receive_output()
2020-02-09 16:39:24 +03:00
2021-02-17 16:23:32 +03:00
class DetectorRunner(FrigateProcess):
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
def __init__(
self,
name,
detection_queue: Queue,
cameras: list[str],
avg_speed: Value,
start_time: Value,
config: FrigateConfig,
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
detector_config: BaseDetectorConfig,
stop_event: MpEvent,
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
) -> None:
super().__init__(stop_event, PROCESS_PRIORITY_HIGH, name=name, daemon=True)
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
self.detection_queue = detection_queue
self.cameras = cameras
self.avg_speed = avg_speed
self.start_time = start_time
self.config = config
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
self.detector_config = detector_config
self.outputs: dict = {}
2020-11-30 01:19:59 +03:00
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
def create_output_shm(self, name: str):
out_shm = UntrackedSharedMemory(name=f"out-{name}", create=False)
out_np = np.ndarray((20, 6), dtype=np.float32, buffer=out_shm.buf)
self.outputs[name] = {"shm": out_shm, "np": out_np}
2021-02-17 16:23:32 +03:00
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
def run(self) -> None:
self.pre_run_setup(self.config.logger)
2021-02-17 16:23:32 +03:00
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
frame_manager = SharedMemoryFrameManager()
object_detector = LocalObjectDetector(detector_config=self.detector_config)
detector_publisher = ObjectDetectorPublisher()
2020-11-30 01:19:59 +03:00
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
for name in self.cameras:
self.create_output_shm(name)
2020-02-09 16:39:24 +03:00
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
while not self.stop_event.is_set():
try:
connection_id = self.detection_queue.get(timeout=1)
except queue.Empty:
continue
input_frame = frame_manager.get(
connection_id,
(
1,
self.detector_config.model.height,
self.detector_config.model.width,
3,
),
)
if input_frame is None:
logger.warning(f"Failed to get frame {connection_id} from SHM")
continue
2020-02-09 16:39:24 +03:00
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
# detect and send the output
self.start_time.value = datetime.datetime.now().timestamp()
detections = object_detector.detect_raw(input_frame)
duration = datetime.datetime.now().timestamp() - self.start_time.value
frame_manager.close(connection_id)
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
if connection_id not in self.outputs:
self.create_output_shm(connection_id)
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
self.outputs[connection_id]["np"][:] = detections[:]
detector_publisher.publish(connection_id)
self.start_time.value = 0.0
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
self.avg_speed.value = (self.avg_speed.value * 9 + duration) / 10
2021-02-17 16:23:32 +03:00
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
detector_publisher.stop()
logger.info("Exited detection process...")
2021-02-17 16:23:32 +03:00
class AsyncDetectorRunner(FrigateProcess):
def __init__(
self,
name,
detection_queue: Queue,
cameras: list[str],
avg_speed: Value,
start_time: Value,
config: FrigateConfig,
detector_config: BaseDetectorConfig,
stop_event: MpEvent,
) -> None:
super().__init__(stop_event, PROCESS_PRIORITY_HIGH, name=name, daemon=True)
self.detection_queue = detection_queue
self.cameras = cameras
self.avg_speed = avg_speed
self.start_time = start_time
self.config = config
self.detector_config = detector_config
self.outputs: dict = {}
self._frame_manager: SharedMemoryFrameManager | None = None
self._publisher: ObjectDetectorPublisher | None = None
self._detector: AsyncLocalObjectDetector | None = None
self.send_times = deque()
def create_output_shm(self, name: str):
out_shm = UntrackedSharedMemory(name=f"out-{name}", create=False)
out_np = np.ndarray((20, 6), dtype=np.float32, buffer=out_shm.buf)
self.outputs[name] = {"shm": out_shm, "np": out_np}
def _detect_worker(self) -> None:
logger.info("Starting Detect Worker Thread")
while not self.stop_event.is_set():
try:
connection_id = self.detection_queue.get(timeout=1)
except queue.Empty:
continue
input_frame = self._frame_manager.get(
connection_id,
(
1,
self.detector_config.model.height,
self.detector_config.model.width,
3,
),
)
if input_frame is None:
logger.warning(f"Failed to get frame {connection_id} from SHM")
continue
# mark start time and send to accelerator
self.send_times.append(time.perf_counter())
self._detector.async_send_input(input_frame, connection_id)
def _result_worker(self) -> None:
logger.info("Starting Result Worker Thread")
while not self.stop_event.is_set():
connection_id, detections = self._detector.async_receive_output()
if not self.send_times:
# guard; shouldn't happen if send/recv are balanced
continue
ts = self.send_times.popleft()
duration = time.perf_counter() - ts
# release input buffer
self._frame_manager.close(connection_id)
if connection_id not in self.outputs:
self.create_output_shm(connection_id)
# write results and publish
if detections is not None:
self.outputs[connection_id]["np"][:] = detections[:]
self._publisher.publish(connection_id)
# update timers
self.avg_speed.value = (self.avg_speed.value * 9 + duration) / 10
self.start_time.value = 0.0
def run(self) -> None:
self.pre_run_setup(self.config.logger)
self._frame_manager = SharedMemoryFrameManager()
self._publisher = ObjectDetectorPublisher()
self._detector = AsyncLocalObjectDetector(detector_config=self.detector_config)
for name in self.cameras:
self.create_output_shm(name)
t_detect = threading.Thread(target=self._detect_worker, daemon=True)
t_result = threading.Thread(target=self._result_worker, daemon=True)
t_detect.start()
t_result.start()
while not self.stop_event.is_set():
time.sleep(0.5)
self._publisher.stop()
logger.info("Exited async detection process...")
class ObjectDetectProcess:
2021-02-17 16:23:32 +03:00
def __init__(
self,
name: str,
detection_queue: Queue,
cameras: list[str],
config: FrigateConfig,
detector_config: BaseDetectorConfig,
stop_event: MpEvent,
2021-02-17 16:23:32 +03:00
):
2020-11-04 15:28:07 +03:00
self.name = name
self.cameras = cameras
self.detection_queue = detection_queue
self.avg_inference_speed = Value("d", 0.01)
self.detection_start = Value("d", 0.0)
self.detect_process: FrigateProcess | None = None
self.config = config
self.detector_config = detector_config
self.stop_event = stop_event
self.start_or_restart()
2021-02-17 16:23:32 +03:00
def stop(self):
# if the process has already exited on its own, just return
if self.detect_process and self.detect_process.exitcode:
return
self.detect_process.terminate()
2020-11-04 06:26:39 +03:00
logging.info("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
logging.info("Detection process didn't exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
logging.info("Detection process has exited...")
2020-02-09 16:39:24 +03:00
def start_or_restart(self):
self.detection_start.value = 0.0
if (self.detect_process is not None) and self.detect_process.is_alive():
self.stop()
# Async path for MemryX
if self.detector_config.type == "memryx":
self.detect_process = AsyncDetectorRunner(
f"frigate.detector:{self.name}",
self.detection_queue,
self.cameras,
self.avg_inference_speed,
self.detection_start,
self.config,
self.detector_config,
self.stop_event,
)
else:
self.detect_process = DetectorRunner(
f"frigate.detector:{self.name}",
self.detection_queue,
self.cameras,
self.avg_inference_speed,
self.detection_start,
self.config,
self.detector_config,
self.stop_event,
)
2020-02-09 16:39:24 +03:00
self.detect_process.start()
2021-02-17 16:23:32 +03:00
class RemoteObjectDetector:
def __init__(
self,
name: str,
labels: dict[int, str],
detection_queue: Queue,
model_config: ModelConfig,
stop_event: MpEvent,
):
self.labels = labels
self.name = name
self.fps = EventsPerSecond()
self.detection_queue = detection_queue
self.stop_event = stop_event
self.shm = UntrackedSharedMemory(name=self.name, create=False)
2021-02-17 16:23:32 +03:00
self.np_shm = np.ndarray(
(1, model_config.height, model_config.width, 3),
dtype=np.uint8,
buffer=self.shm.buf,
2021-02-17 16:23:32 +03:00
)
self.out_shm = UntrackedSharedMemory(name=f"out-{self.name}", create=False)
2021-02-17 16:23:32 +03:00
self.out_np_shm = np.ndarray((20, 6), dtype=np.float32, buffer=self.out_shm.buf)
Use Fork-Server As Spawn Method (#18682) * Set runtime * Use count correctly * Don't assume camera sizes * Use separate zmq proxy for object detection * Correct order * Use forkserver * Only store PID instead of entire process reference * Cleanup * Catch correct errors * Fix typing * Remove before_run from process util The before_run never actually ran because: You're right to suspect an issue with before_run not being called and a potential deadlock. The way you've implemented the run_wrapper using __getattribute__ for the run method of BaseProcess is a common pitfall in Python's multiprocessing, especially when combined with how multiprocessing.Process works internally. Here's a breakdown of why before_run isn't being called and why you might be experiencing a deadlock: The Problem: __getattribute__ and Process Serialization When you create a multiprocessing.Process object and call start(), the multiprocessing module needs to serialize the process object (or at least enough of it to re-create the process in the new interpreter). It then pickles this serialized object and sends it to the newly spawned process. The issue with your __getattribute__ implementation for run is that: run is retrieved during serialization: When multiprocessing tries to pickle your Process object to send to the new process, it will likely access the run attribute. This triggers your __getattribute__ wrapper, which then tries to bind run_wrapper to self. run_wrapper is bound to the parent process's self: The run_wrapper closure, when created in the parent process, captures the self (the Process instance) from the parent's memory space. Deserialization creates a new object: In the child process, a new Process object is created by deserializing the pickled data. However, the run_wrapper method that was pickled still holds a reference to the self from the parent process. This is a subtle but critical distinction. The child's run is not your wrapped run: When the child process starts, it internally calls its own run method. Because of the serialization and deserialization process, the run method that's ultimately executed in the child process is the original multiprocessing.Process.run or the Process.run if you had directly overridden it. Your __getattribute__ magic, which wraps run, isn't correctly applied to the Process object within the child's context. * Cleanup * Logging bugfix (#18465) * use mp Manager to handle logging queues A Python bug (https://github.com/python/cpython/issues/91555) was preventing logs from the embeddings maintainer process from printing. The bug is fixed in Python 3.14, but a viable workaround is to use the multiprocessing Manager, which better manages mp queues and causes the logging to work correctly. * consolidate * fix typing * Fix typing * Use global log queue * Move to using process for logging * Convert camera tracking to process * Add more processes * Finalize process * Cleanup * Cleanup typing * Formatting * Remove daemon --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-06-12 21:12:34 +03:00
self.detector_subscriber = ObjectDetectorSubscriber(name)
2021-02-17 16:23:32 +03:00
def detect(self, tensor_input, threshold=0.4):
2020-02-09 16:39:24 +03:00
detections = []
if self.stop_event.is_set():
return detections
# Drain any stale detection results from the ZMQ buffer before making a new request
# This prevents reading detection results from a previous request
# NOTE: This should never happen, but can in some rare cases
while True:
try:
self.detector_subscriber.socket.recv_string(flags=zmq.NOBLOCK)
except zmq.Again:
break
# copy input to shared memory
self.np_shm[:] = tensor_input[:]
self.detection_queue.put(self.name)
result = self.detector_subscriber.check_for_update()
# if it timed out
if result is None:
return detections
for d in self.out_np_shm:
if d[1] < threshold:
break
2021-02-17 16:23:32 +03:00
detections.append(
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
)
self.fps.update()
return detections
2021-02-17 16:23:32 +03:00
def cleanup(self):
self.detector_subscriber.stop()
self.shm.unlink()
2020-11-04 15:28:07 +03:00
self.out_shm.unlink()