mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 05:24:11 +03:00
Various fixes (#20785)
* Catch case where detector overflows * Add more debug logs * Cleanup * Adjust no class wording * Adjustments
This commit is contained in:
parent
9e83888133
commit
84409eab7e
@ -397,7 +397,14 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
source_type, _, camera, frame_name, data = update
|
||||
|
||||
logger.debug(
|
||||
f"Received update - source_type: {source_type}, camera: {camera}, data label: {data.get('label') if data else 'None'}"
|
||||
)
|
||||
|
||||
if not camera or source_type != EventTypeEnum.tracked_object:
|
||||
logger.debug(
|
||||
f"Skipping update - camera: {camera}, source_type: {source_type}"
|
||||
)
|
||||
return
|
||||
|
||||
if self.config.semantic_search.enabled:
|
||||
@ -407,6 +414,9 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
# no need to process updated objects if no processors are active
|
||||
if len(self.realtime_processors) == 0 and len(self.post_processors) == 0:
|
||||
logger.debug(
|
||||
f"No processors active - realtime: {len(self.realtime_processors)}, post: {len(self.post_processors)}"
|
||||
)
|
||||
return
|
||||
|
||||
# Create our own thumbnail based on the bounding box and the frame time
|
||||
@ -415,6 +425,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
frame_name, camera_config.frame_shape_yuv
|
||||
)
|
||||
except FileNotFoundError:
|
||||
logger.debug(f"Frame {frame_name} not found for camera {camera}")
|
||||
pass
|
||||
|
||||
if yuv_frame is None:
|
||||
@ -423,7 +434,11 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
)
|
||||
return
|
||||
|
||||
logger.debug(
|
||||
f"Processing {len(self.realtime_processors)} realtime processors for object {data.get('id')} (label: {data.get('label')})"
|
||||
)
|
||||
for processor in self.realtime_processors:
|
||||
logger.debug(f"Calling process_frame on {processor.__class__.__name__}")
|
||||
processor.process_frame(data, yuv_frame)
|
||||
|
||||
for processor in self.post_processors:
|
||||
|
||||
@ -9,6 +9,7 @@ from multiprocessing import Queue, Value
|
||||
from multiprocessing.synchronize import Event as MpEvent
|
||||
|
||||
import numpy as np
|
||||
import zmq
|
||||
|
||||
from frigate.comms.object_detector_signaler import (
|
||||
ObjectDetectorPublisher,
|
||||
@ -377,6 +378,15 @@ class RemoteObjectDetector:
|
||||
if self.stop_event.is_set():
|
||||
return detections
|
||||
|
||||
# Drain any stale detection results from the ZMQ buffer before making a new request
|
||||
# This prevents reading detection results from a previous request
|
||||
# NOTE: This should never happen, but can in some rare cases
|
||||
while True:
|
||||
try:
|
||||
self.detector_subscriber.socket.recv_string(flags=zmq.NOBLOCK)
|
||||
except zmq.Again:
|
||||
break
|
||||
|
||||
# copy input to shared memory
|
||||
self.np_shm[:] = tensor_input[:]
|
||||
self.detection_queue.put(self.name)
|
||||
|
||||
@ -181,6 +181,7 @@ type GroupedClassificationCardProps = {
|
||||
selectedItems: string[];
|
||||
i18nLibrary: string;
|
||||
objectType: string;
|
||||
noClassificationLabel?: string;
|
||||
onClick: (data: ClassificationItemData | undefined) => void;
|
||||
children?: (data: ClassificationItemData) => React.ReactNode;
|
||||
};
|
||||
@ -190,6 +191,7 @@ export function GroupedClassificationCard({
|
||||
threshold,
|
||||
selectedItems,
|
||||
i18nLibrary,
|
||||
noClassificationLabel = "details.none",
|
||||
onClick,
|
||||
children,
|
||||
}: GroupedClassificationCardProps) {
|
||||
@ -222,10 +224,14 @@ export function GroupedClassificationCard({
|
||||
const bestTyped: ClassificationItemData = best;
|
||||
return {
|
||||
...bestTyped,
|
||||
name: event ? (event.sub_label ?? t("details.unknown")) : bestTyped.name,
|
||||
name: event
|
||||
? event.sub_label && event.sub_label !== "none"
|
||||
? event.sub_label
|
||||
: t(noClassificationLabel)
|
||||
: bestTyped.name,
|
||||
score: event?.data?.sub_label_score || bestTyped.score,
|
||||
};
|
||||
}, [group, event, t]);
|
||||
}, [group, event, noClassificationLabel, t]);
|
||||
|
||||
const bestScoreStatus = useMemo(() => {
|
||||
if (!bestItem?.score || !threshold) {
|
||||
@ -311,8 +317,10 @@ export function GroupedClassificationCard({
|
||||
isMobile && "px-2",
|
||||
)}
|
||||
>
|
||||
{event?.sub_label ? event.sub_label : t("details.unknown")}
|
||||
{event?.sub_label && (
|
||||
{event?.sub_label && event.sub_label !== "none"
|
||||
? event.sub_label
|
||||
: t(noClassificationLabel)}
|
||||
{event?.sub_label && event.sub_label !== "none" && (
|
||||
<div
|
||||
className={cn(
|
||||
"",
|
||||
|
||||
@ -845,6 +845,7 @@ function FaceAttemptGroup({
|
||||
selectedItems={selectedFaces}
|
||||
i18nLibrary="views/faceLibrary"
|
||||
objectType="person"
|
||||
noClassificationLabel="details.unknown"
|
||||
onClick={(data) => {
|
||||
if (data) {
|
||||
onClickFaces([data.filename], true);
|
||||
|
||||
@ -961,6 +961,7 @@ function ObjectTrainGrid({
|
||||
selectedItems={selectedImages}
|
||||
i18nLibrary="views/classificationModel"
|
||||
objectType={model.object_config?.objects?.at(0) ?? "Object"}
|
||||
noClassificationLabel="details.none"
|
||||
onClick={(data) => {
|
||||
if (data) {
|
||||
onClickImages([data.filename], true);
|
||||
|
||||
Loading…
Reference in New Issue
Block a user