mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 01:17:06 +03:00
93 lines
3.8 KiB
C++
93 lines
3.8 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <migraphx/onnx/op_parser.hpp>
|
|
#include <migraphx/ranges.hpp>
|
|
#include <migraphx/instruction.hpp>
|
|
#include <migraphx/make_op.hpp>
|
|
#include <migraphx/tune_axis.hpp>
|
|
#include <optional>
|
|
|
|
namespace migraphx {
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
|
namespace onnx {
|
|
|
|
// generate unique output stream y, given input stream x;
|
|
//
|
|
// case unsorted:
|
|
// input x: [2, 1, 1, 3, 4, 3], attr_sorted = 0;
|
|
// output(s):
|
|
// y: [2, 1, 3, 4] --- the unique output
|
|
// y_indices: [0, 1, 3, 4] --- first incidence, in terms of indices of x
|
|
// x_rev_indices: [0, 1, 1, 2, 3, 2] --- x seen in terms of indices of y
|
|
// y_count: [1, 2, 2, 1] -- count at each y_index. sum = len(x)
|
|
//
|
|
// case sorted:
|
|
// input x: [2, 1, 1, 3, 4, 3], attr_sorted = 1;
|
|
// output(s):
|
|
// y: [1, 2, 3, 4] --- the unique output
|
|
// y_indices: [1, 0, 3, 4] --- first incidence, in terms of indices of x
|
|
// x_rev_indices: [1, 0, 0, 2, 3, 2] --- x seen in terms of indices of y
|
|
// y_count: [2, 1, 2, 1] -- count at each y_index. sum = len(x)
|
|
|
|
struct parse_unique : op_parser<parse_unique>
|
|
{
|
|
|
|
std::vector<op_desc> operators() const { return {{"Unique"}}; }
|
|
|
|
std::vector<instruction_ref> parse(const op_desc& opd,
|
|
const onnx_parser& parser,
|
|
const onnx_parser::node_info& info,
|
|
std::vector<instruction_ref> args) const
|
|
{
|
|
int64_t sorted = 1; // default = sorted.
|
|
|
|
if(contains(info.attributes, "sorted"))
|
|
sorted = parser.parse_value(info.attributes.at("sorted")).at<int>();
|
|
|
|
std::optional<int64_t> axis;
|
|
if(contains(info.attributes, "axis"))
|
|
{
|
|
auto n_dim = args[0]->get_shape().ndim();
|
|
axis = parser.parse_value(info.attributes.at("axis")).at<int>();
|
|
axis = tune_axis(n_dim, *axis, opd.onnx_name);
|
|
}
|
|
migraphx::argument data_arg = args.back()->eval();
|
|
|
|
auto opr = axis ? migraphx::make_op("unique", {{"axis", *axis}, {"sorted", sorted}})
|
|
: migraphx::make_op("unique", {{"sorted", sorted}});
|
|
auto u_opr = info.add_instruction(opr, args.at(0));
|
|
auto i_y = info.add_instruction(make_op("get_tuple_elem", {{"index", 0}}), u_opr);
|
|
auto i_y_idx = info.add_instruction(make_op("get_tuple_elem", {{"index", 1}}), u_opr);
|
|
auto i_x_idx = info.add_instruction(make_op("get_tuple_elem", {{"index", 2}}), u_opr);
|
|
auto i_count = info.add_instruction(make_op("get_tuple_elem", {{"index", 3}}), u_opr);
|
|
|
|
return {i_y, i_y_idx, i_x_idx, i_count};
|
|
}
|
|
};
|
|
|
|
} // namespace onnx
|
|
} // namespace MIGRAPHX_INLINE_NS
|
|
} // namespace migraphx
|