frigate/docker/rocm/migraphx/onnx/parse_split.cpp
WhiteWolf84 7eefb89bf6 upload
2025-02-03 22:01:20 +01:00

199 lines
7.8 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/tune_axis.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/stringutils.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
auto parse_dyn_split(const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args,
int64_t tuned_axis)
{
if(contains(info.attributes, "split"))
{
MIGRAPHX_THROW("PARSE_SPLIT: dynamic input and non-fixed split axis and `split` "
"attribute not supported");
}
if(args.size() == 2)
{
MIGRAPHX_THROW("PARSE_SPLIT: dynamic input and non-fixed split axis and `split` "
"input not supported");
}
std::size_t num_outputs = info.num_outputs;
std::vector<instruction_ref> ret_ins(num_outputs);
// Doing shape calculations for the splits in the graph
auto split_dim = info.add_instruction(
make_op("dimensions_of", {{"start", tuned_axis}, {"end", tuned_axis + 1}}), args[0]);
shape int64_scalar_shape{shape::int64_type, {1}, {0}};
auto num_outputs_lit = info.add_literal(literal{int64_scalar_shape, {num_outputs}});
auto num_outputs_minus_1_lit = info.add_literal(literal{int64_scalar_shape, {num_outputs - 1}});
// (A + (B - 1)) / B == ceil(A / B)
auto chunk_size = info.add_instruction(
make_op("div"),
info.add_instruction(make_op("add"), split_dim, num_outputs_minus_1_lit),
num_outputs_lit);
for(int n = 0; n < num_outputs - 1; ++n)
{
// slice(input, starts = {n * chunk_size}, ends = {(n+1) * chunk_size}); axes =
// {tuned_axis}
ret_ins.at(n) = info.add_instruction(
make_op("slice", {{"axes", {tuned_axis}}}),
args[0],
info.add_instruction(
make_op("mul"), chunk_size, info.add_literal(literal{int64_scalar_shape, {n}})),
info.add_instruction(make_op("mul"),
chunk_size,
info.add_literal(literal{int64_scalar_shape, {n + 1}})));
}
// last slice: slice(input, starts = {n * chunk_size}); ends = max_int, axes =
// {tuned_axis}
ret_ins.at(num_outputs - 1) = info.add_instruction(
make_op("slice", {{"axes", {tuned_axis}}, {"ends", {std::numeric_limits<int64_t>::max()}}}),
args[0],
info.add_instruction(make_op("mul"),
chunk_size,
info.add_literal(literal{int64_scalar_shape, {num_outputs - 1}})));
return ret_ins;
}
auto parse_static_split(const onnx_parser::node_info& info,
const onnx_parser& parser,
const std::vector<instruction_ref>& args,
int64_t tuned_axis)
{
const auto& input_shape = args[0]->get_shape();
// either static shape or fixed dynamic_dimension for split axis
auto tuned_axis_len = input_shape.to_static(0).lens().at(tuned_axis);
std::vector<int64_t> vec_splits;
if(contains(info.attributes, "split"))
{
literal s = parser.parse_value(info.attributes.at("split"));
s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });
}
else if(args.size() == 2)
{
auto s = args[1]->eval();
check_arg_empty(s, "PARSE_SPLIT: non-constant `split` input is not supported");
s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });
}
// no split attribute, input is equally divided
else
{
std::size_t num_outputs = info.num_outputs;
// the num_outputs attribute seems to be redundant since we already have
// node_info::num_outputs, but we can still perform an error check
if(contains(info.attributes, "num_outputs"))
{
num_outputs = parser.parse_value(info.attributes.at("num_outputs")).at<std::size_t>();
if(num_outputs != info.num_outputs)
{
MIGRAPHX_THROW("PARSE_SPLIT: num_outputs attribute " + std::to_string(num_outputs) +
" doesn't match actual number of outputs " +
std::to_string(info.num_outputs) + "!");
}
}
if(tuned_axis_len % num_outputs == 0)
{
std::size_t chunk_size = tuned_axis_len / num_outputs;
vec_splits.resize(num_outputs, chunk_size);
}
else
{
std::size_t chunk_size = tuned_axis_len / num_outputs + 1;
std::size_t last_chunk_size = tuned_axis_len - chunk_size * (num_outputs - 1);
vec_splits.resize(num_outputs - 1, chunk_size);
vec_splits.push_back(last_chunk_size);
}
}
if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
static_cast<int64_t>(tuned_axis_len))
{
MIGRAPHX_THROW(
"PARSE_SPLIT: sum of split attribute unequal to dim size of axis! tuned axis:" +
std::to_string(tuned_axis_len) + " Output " + to_string_range(vec_splits) + " Rank " +
std::to_string(input_shape.ndim()));
}
std::vector<instruction_ref> ret_ins;
int64_t start = 0;
for(auto sl : vec_splits)
{
ret_ins.push_back(info.add_instruction(
make_op("slice", {{"axes", {tuned_axis}}, {"starts", {start}}, {"ends", {start + sl}}}),
args[0]));
start += sl;
}
return ret_ins;
}
struct parse_split : op_parser<parse_split>
{
std::vector<op_desc> operators() const { return {{"Split"}}; }
std::vector<instruction_ref> parse(const op_desc& opd,
const onnx_parser& parser,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
{
int64_t axis = 0;
if(contains(info.attributes, "axis"))
{
axis = parser.parse_value(info.attributes.at("axis")).at<int>();
}
const auto& input_shape = args[0]->get_shape();
// axis over which the split occurs (split_axis)
int64_t tuned_axis = tune_axis(input_shape.ndim(), axis, opd.onnx_name);
auto split_axis_is_fixed = [&]() {
return input_shape.dyn_dims().at(tuned_axis).is_fixed();
};
if(input_shape.dynamic() and not split_axis_is_fixed())
{
return parse_dyn_split(info, args, tuned_axis);
}
else
{
return parse_static_split(info, parser, args, tuned_axis);
}
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx