mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 01:17:06 +03:00
199 lines
7.8 KiB
C++
199 lines
7.8 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <migraphx/onnx/op_parser.hpp>
|
|
#include <migraphx/instruction.hpp>
|
|
#include <migraphx/ranges.hpp>
|
|
#include <migraphx/make_op.hpp>
|
|
#include <migraphx/tune_axis.hpp>
|
|
#include <migraphx/onnx/checks.hpp>
|
|
|
|
#include <migraphx/stringutils.hpp>
|
|
|
|
namespace migraphx {
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
|
namespace onnx {
|
|
|
|
auto parse_dyn_split(const onnx_parser::node_info& info,
|
|
const std::vector<instruction_ref>& args,
|
|
int64_t tuned_axis)
|
|
{
|
|
if(contains(info.attributes, "split"))
|
|
{
|
|
MIGRAPHX_THROW("PARSE_SPLIT: dynamic input and non-fixed split axis and `split` "
|
|
"attribute not supported");
|
|
}
|
|
if(args.size() == 2)
|
|
{
|
|
MIGRAPHX_THROW("PARSE_SPLIT: dynamic input and non-fixed split axis and `split` "
|
|
"input not supported");
|
|
}
|
|
|
|
std::size_t num_outputs = info.num_outputs;
|
|
std::vector<instruction_ref> ret_ins(num_outputs);
|
|
|
|
// Doing shape calculations for the splits in the graph
|
|
auto split_dim = info.add_instruction(
|
|
make_op("dimensions_of", {{"start", tuned_axis}, {"end", tuned_axis + 1}}), args[0]);
|
|
shape int64_scalar_shape{shape::int64_type, {1}, {0}};
|
|
auto num_outputs_lit = info.add_literal(literal{int64_scalar_shape, {num_outputs}});
|
|
auto num_outputs_minus_1_lit = info.add_literal(literal{int64_scalar_shape, {num_outputs - 1}});
|
|
// (A + (B - 1)) / B == ceil(A / B)
|
|
auto chunk_size = info.add_instruction(
|
|
make_op("div"),
|
|
info.add_instruction(make_op("add"), split_dim, num_outputs_minus_1_lit),
|
|
num_outputs_lit);
|
|
for(int n = 0; n < num_outputs - 1; ++n)
|
|
{
|
|
// slice(input, starts = {n * chunk_size}, ends = {(n+1) * chunk_size}); axes =
|
|
// {tuned_axis}
|
|
ret_ins.at(n) = info.add_instruction(
|
|
make_op("slice", {{"axes", {tuned_axis}}}),
|
|
args[0],
|
|
info.add_instruction(
|
|
make_op("mul"), chunk_size, info.add_literal(literal{int64_scalar_shape, {n}})),
|
|
info.add_instruction(make_op("mul"),
|
|
chunk_size,
|
|
info.add_literal(literal{int64_scalar_shape, {n + 1}})));
|
|
}
|
|
// last slice: slice(input, starts = {n * chunk_size}); ends = max_int, axes =
|
|
// {tuned_axis}
|
|
ret_ins.at(num_outputs - 1) = info.add_instruction(
|
|
make_op("slice", {{"axes", {tuned_axis}}, {"ends", {std::numeric_limits<int64_t>::max()}}}),
|
|
args[0],
|
|
info.add_instruction(make_op("mul"),
|
|
chunk_size,
|
|
info.add_literal(literal{int64_scalar_shape, {num_outputs - 1}})));
|
|
return ret_ins;
|
|
}
|
|
|
|
auto parse_static_split(const onnx_parser::node_info& info,
|
|
const onnx_parser& parser,
|
|
const std::vector<instruction_ref>& args,
|
|
int64_t tuned_axis)
|
|
{
|
|
const auto& input_shape = args[0]->get_shape();
|
|
// either static shape or fixed dynamic_dimension for split axis
|
|
auto tuned_axis_len = input_shape.to_static(0).lens().at(tuned_axis);
|
|
std::vector<int64_t> vec_splits;
|
|
if(contains(info.attributes, "split"))
|
|
{
|
|
literal s = parser.parse_value(info.attributes.at("split"));
|
|
s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });
|
|
}
|
|
else if(args.size() == 2)
|
|
{
|
|
auto s = args[1]->eval();
|
|
check_arg_empty(s, "PARSE_SPLIT: non-constant `split` input is not supported");
|
|
s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });
|
|
}
|
|
// no split attribute, input is equally divided
|
|
else
|
|
{
|
|
std::size_t num_outputs = info.num_outputs;
|
|
// the num_outputs attribute seems to be redundant since we already have
|
|
// node_info::num_outputs, but we can still perform an error check
|
|
if(contains(info.attributes, "num_outputs"))
|
|
{
|
|
num_outputs = parser.parse_value(info.attributes.at("num_outputs")).at<std::size_t>();
|
|
if(num_outputs != info.num_outputs)
|
|
{
|
|
MIGRAPHX_THROW("PARSE_SPLIT: num_outputs attribute " + std::to_string(num_outputs) +
|
|
" doesn't match actual number of outputs " +
|
|
std::to_string(info.num_outputs) + "!");
|
|
}
|
|
}
|
|
if(tuned_axis_len % num_outputs == 0)
|
|
{
|
|
std::size_t chunk_size = tuned_axis_len / num_outputs;
|
|
vec_splits.resize(num_outputs, chunk_size);
|
|
}
|
|
else
|
|
{
|
|
std::size_t chunk_size = tuned_axis_len / num_outputs + 1;
|
|
std::size_t last_chunk_size = tuned_axis_len - chunk_size * (num_outputs - 1);
|
|
vec_splits.resize(num_outputs - 1, chunk_size);
|
|
vec_splits.push_back(last_chunk_size);
|
|
}
|
|
}
|
|
|
|
if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
|
|
static_cast<int64_t>(tuned_axis_len))
|
|
{
|
|
MIGRAPHX_THROW(
|
|
"PARSE_SPLIT: sum of split attribute unequal to dim size of axis! tuned axis:" +
|
|
std::to_string(tuned_axis_len) + " Output " + to_string_range(vec_splits) + " Rank " +
|
|
std::to_string(input_shape.ndim()));
|
|
}
|
|
|
|
std::vector<instruction_ref> ret_ins;
|
|
int64_t start = 0;
|
|
for(auto sl : vec_splits)
|
|
{
|
|
ret_ins.push_back(info.add_instruction(
|
|
make_op("slice", {{"axes", {tuned_axis}}, {"starts", {start}}, {"ends", {start + sl}}}),
|
|
args[0]));
|
|
start += sl;
|
|
}
|
|
|
|
return ret_ins;
|
|
}
|
|
|
|
struct parse_split : op_parser<parse_split>
|
|
{
|
|
std::vector<op_desc> operators() const { return {{"Split"}}; }
|
|
|
|
std::vector<instruction_ref> parse(const op_desc& opd,
|
|
const onnx_parser& parser,
|
|
onnx_parser::node_info info,
|
|
std::vector<instruction_ref> args) const
|
|
{
|
|
int64_t axis = 0;
|
|
if(contains(info.attributes, "axis"))
|
|
{
|
|
axis = parser.parse_value(info.attributes.at("axis")).at<int>();
|
|
}
|
|
|
|
const auto& input_shape = args[0]->get_shape();
|
|
// axis over which the split occurs (split_axis)
|
|
int64_t tuned_axis = tune_axis(input_shape.ndim(), axis, opd.onnx_name);
|
|
|
|
auto split_axis_is_fixed = [&]() {
|
|
return input_shape.dyn_dims().at(tuned_axis).is_fixed();
|
|
};
|
|
|
|
if(input_shape.dynamic() and not split_axis_is_fixed())
|
|
{
|
|
return parse_dyn_split(info, args, tuned_axis);
|
|
}
|
|
else
|
|
{
|
|
return parse_static_split(info, parser, args, tuned_axis);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace onnx
|
|
} // namespace MIGRAPHX_INLINE_NS
|
|
} // namespace migraphx
|