mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 01:17:06 +03:00
110 lines
4.4 KiB
C++
110 lines
4.4 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <migraphx/onnx/op_parser.hpp>
|
|
#include <migraphx/ranges.hpp>
|
|
#include <migraphx/instruction.hpp>
|
|
#include <migraphx/make_op.hpp>
|
|
#include <migraphx/onnx/checks.hpp>
|
|
#include <random>
|
|
#include <set>
|
|
|
|
namespace migraphx {
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
|
namespace onnx {
|
|
|
|
struct parse_randomnormal_ops : op_parser<parse_randomnormal_ops>
|
|
{
|
|
std::set<shape::type_t> valid_types = {shape::float_type, shape::half_type, shape::double_type};
|
|
|
|
std::vector<op_desc> operators() const { return {{"RandomNormal"}, {"RandomNormalLike"}}; }
|
|
|
|
instruction_ref parse(const op_desc& opd,
|
|
const onnx_parser& parser,
|
|
const onnx_parser::node_info& info,
|
|
std::vector<instruction_ref> args) const
|
|
{
|
|
int dtype = 1;
|
|
bool use_dtype = false;
|
|
if(contains(info.attributes, "dtype"))
|
|
{
|
|
dtype = info.attributes.at("dtype").i();
|
|
use_dtype = true;
|
|
}
|
|
shape::type_t out_type = get_type(dtype);
|
|
if(not contains(valid_types, out_type))
|
|
MIGRAPHX_THROW(opd.onnx_name + ": invalid output type: " + std::to_string(dtype) +
|
|
". Valid types are 1 (float), 10 (half), and 11 (double).");
|
|
|
|
float mean = 0.0;
|
|
if(contains(info.attributes, "mean"))
|
|
mean = info.attributes.at("mean").f();
|
|
|
|
float scale = 1.0;
|
|
if(contains(info.attributes, "scale"))
|
|
scale = info.attributes.at("scale").f();
|
|
|
|
shape out_shape;
|
|
if(contains(info.attributes, "shape"))
|
|
{
|
|
// RandomNormal:
|
|
// output type and shape must come from attributes
|
|
std::vector<int> out_lens;
|
|
literal ls = parser.parse_value(info.attributes.at("shape"));
|
|
ls.visit([&](auto s) { out_lens.assign(s.begin(), s.end()); });
|
|
out_shape = shape{out_type, out_lens};
|
|
}
|
|
else if(args.size() == 1)
|
|
{
|
|
// RandomNormalLike:
|
|
// output type and shape are the same as the input's by default
|
|
// dtype is used instead when attribute is set
|
|
if(not contains(valid_types, args[0]->get_shape().type()))
|
|
MIGRAPHX_THROW(opd.onnx_name + ": invalid output type: " +
|
|
std::to_string(args[0]->get_shape().type()) +
|
|
". Valid types are float, half, and double.");
|
|
out_shape =
|
|
use_dtype ? shape{out_type, args[0]->get_shape().lens()} : args[0]->get_shape();
|
|
}
|
|
else
|
|
{
|
|
MIGRAPHX_THROW(opd.onnx_name +
|
|
": cannot deduce shape without shape attribute or argument.");
|
|
}
|
|
|
|
std::mt19937 gen(std::chrono::high_resolution_clock::now().time_since_epoch().count());
|
|
if(contains(info.attributes, "seed"))
|
|
gen.seed(info.attributes.at("seed").f());
|
|
|
|
std::normal_distribution<> d(mean, scale);
|
|
std::vector<double> rand_vals(out_shape.elements());
|
|
std::generate(rand_vals.begin(), rand_vals.end(), [&]() { return d(gen); });
|
|
|
|
return info.add_literal(literal{out_shape, rand_vals});
|
|
}
|
|
};
|
|
|
|
} // namespace onnx
|
|
} // namespace MIGRAPHX_INLINE_NS
|
|
} // namespace migraphx
|