frigate/docker/rocm/migraphx/onnx/parse_quantizelinear.cpp
WhiteWolf84 7eefb89bf6 upload
2025-02-03 22:01:20 +01:00

116 lines
4.6 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/tune_axis.hpp>
#include <migraphx/common.hpp>
#include <migraphx/onnx/quantize_dequantize_linear.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
struct parse_quantizelinear : op_parser<parse_quantizelinear>
{
std::vector<op_desc> operators() const { return {{"QuantizeLinear"}}; }
instruction_ref parse(const op_desc& opd,
const onnx_parser& parser,
const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const
{
if(args.size() < 2 or args.size() > 3)
{
MIGRAPHX_THROW("QuantizeLinear: must have either 2 or 3 inputs, " +
std::to_string(args.size()) + " input(s) provided");
}
// Starting with version 19 ONNX introduced the constraint that x and y_scale types must be
// the same
if(parser.opset_version >= 19 and
args[0]->get_shape().type() != args[1]->get_shape().type())
{
MIGRAPHX_THROW("QuantizeLinear: x and y_scale must be of same type");
}
if(args.size() == 3 and args[1]->get_shape().lens() != args[2]->get_shape().lens())
{
MIGRAPHX_THROW(
"QuantizeLinear: y_scale and y_zero_point shapes must be equal. Provided y_scale "
"shape: " +
to_string_range(args[1]->get_shape().lens()) +
", provided y_zero_point shape: " + to_string_range(args[2]->get_shape().lens()));
}
int axis = 1;
if(contains(info.attributes, "axis"))
axis = info.attributes.at("axis").i();
int block_size = 0;
if(contains(info.attributes, "block_size"))
block_size = info.attributes.at("block_size").i();
std::optional<migraphx::shape::type_t> output_type;
if(contains(info.attributes, "output_dtype"))
{
output_type = get_type(info.attributes.at("output_dtype").i());
}
if(output_type.has_value() and args.size() == 3 and
*output_type != args[2]->get_shape().type())
{
MIGRAPHX_THROW(
"QuantizeLinear: output_type and y_zero_point type must match. output_type: " +
to_string(*output_type) +
+", y_zero_point type: " + to_string(args[2]->get_shape().type()));
}
args = transform_quantize_dequantize_linear_inputs(
info, opd.onnx_name, block_size, axis, args);
if(parser.opset_version < 19)
{
auto common_type = common_shape({args[0]->get_shape(), args[1]->get_shape()}).type();
std::transform(args.begin(), args.begin() + 2, args.begin(), [&](auto ins) {
if(ins->get_shape().type() != common_type)
ins = info.add_instruction(make_op("convert", {{"target_type", common_type}}),
ins);
return ins;
});
}
if(output_type.has_value())
return info.add_instruction(make_op("quantizelinear", {{"out_type", *output_type}}),
args);
else
return info.add_instruction(make_op("quantizelinear"), args);
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx