mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 01:17:06 +03:00
152 lines
5.5 KiB
C++
152 lines
5.5 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <migraphx/onnx/op_parser.hpp>
|
|
#include <migraphx/ranges.hpp>
|
|
#include <migraphx/common.hpp>
|
|
#include <migraphx/make_op.hpp>
|
|
#include <migraphx/onnx/checks.hpp>
|
|
#include <migraphx/onnx/broadcast_qdq.hpp>
|
|
#include <migraphx/op/pooling.hpp>
|
|
#include <migraphx/instruction.hpp>
|
|
|
|
namespace migraphx {
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
|
namespace onnx {
|
|
|
|
/*
|
|
*********************************************************************************
|
|
* Reference: see QLinearSigmoid, QLinearLeakyRelu in *
|
|
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
|
|
*********************************************************************************
|
|
|
|
com.microsoft.QLinearSigmoid
|
|
QLinearSigmoid takes quantized input data (Tensor), and quantize parameter for output, and produces
|
|
one output data (Tensor) where the function f(x) = quantize(Sigmoid(dequantize(x))), is applied to
|
|
the data tensor elementwise. Where the function Sigmoid(x) = 1 / (1 + exp(-x))
|
|
|
|
Version
|
|
This version of the operator has been available since version 1 of the 'com.microsoft' operator
|
|
set.
|
|
|
|
*****************************************************************************************************
|
|
|
|
com.microsoft.QLinearLeakyRelu
|
|
QLinearLeakyRelu takes quantized input data (Tensor), an argument alpha, and quantize parameter for
|
|
output, and produces one output data (Tensor) where the function f(x) = quantize(alpha *
|
|
dequantize(x)) for dequantize(x) < 0, f(x) = quantize(dequantize(x)) for dequantize(x) >= 0, is
|
|
applied to the data tensor elementwise.
|
|
|
|
Version
|
|
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
|
|
|
|
Attributes
|
|
alpha : float
|
|
Coefficient of leakage.
|
|
|
|
******************************************************************************************************
|
|
|
|
Generic input layout of QLinear unary operators:
|
|
|
|
Inputs (4 - 5)
|
|
X : T
|
|
Input tensor
|
|
|
|
X_scale : tensor(float)
|
|
Input X's scale. It's a scalar, which means a per-tensor/layer quantization.
|
|
|
|
X_zero_point (optional) : T
|
|
Input X's zero point. Default value is 0 if it's not specified. It's a scalar, which means a
|
|
per-tensor/layer quantization.
|
|
|
|
Y_scale : tensor(float) Output Y's scale. It's a scalar, which means
|
|
a per-tensor/layer quantization.
|
|
|
|
Y_zero_point (optional) : T Output Y's zero point. Default value is
|
|
0 if it's not specified. It's a scalar, which means a per-tensor/layer quantization.
|
|
|
|
Outputs
|
|
Y : T
|
|
Output tensor
|
|
|
|
Type Constraints
|
|
T : tensor(uint8), tensor(int8)
|
|
Constrain input and output types to 8 bit tensors.
|
|
|
|
*/
|
|
|
|
struct parse_qlinearunary : op_parser<parse_qlinearunary>
|
|
{
|
|
std::vector<op_desc> operators() const
|
|
{
|
|
return {{"QLinearSigmoid", "sigmoid"}, {"QLinearLeakyRelu", "leaky_relu"}};
|
|
}
|
|
|
|
void check_inputs(const op_desc& opd, const std::vector<instruction_ref>& args) const
|
|
{
|
|
if(args.size() < 4)
|
|
MIGRAPHX_THROW(opd.op_name + ": missing inputs");
|
|
|
|
const auto& in_x = args[0];
|
|
|
|
auto sh_x = in_x->get_shape();
|
|
auto type_x = sh_x.type();
|
|
if(type_x != migraphx::shape::int8_type and type_x != migraphx::shape::uint8_type)
|
|
MIGRAPHX_THROW(opd.op_name + ": unsupported input type");
|
|
}
|
|
|
|
instruction_ref parse(const op_desc& opd,
|
|
const onnx_parser& parser,
|
|
const onnx_parser::node_info& info,
|
|
const std::vector<instruction_ref>& args) const
|
|
{
|
|
check_inputs(opd, args);
|
|
|
|
// X
|
|
const auto& in_x = args[0];
|
|
const auto& in_scale_x = args[1];
|
|
const auto& in_zero_pt_x = args[2];
|
|
|
|
auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, in_scale_x, in_zero_pt_x, info);
|
|
|
|
// Y = (op(dequantizelinear(x))
|
|
auto op = parser.load(opd.op_name, info);
|
|
auto y = info.add_instruction(op, dquant_x);
|
|
|
|
const auto& in_scale_y = args[3];
|
|
|
|
// zero_pt for Y is supplied as the last optional argument..
|
|
if(args.size() == 5)
|
|
return (bcast_qdq_instr("quantizelinear", y, in_scale_y, args[4], info));
|
|
|
|
// if no zero_pt: just broadcast the scale..
|
|
auto bcast_scale_sigm = bcast_scalar_instr(y->get_shape(), in_scale_y, info);
|
|
return (info.add_instruction(migraphx::make_op("quantizelinear"), y, bcast_scale_sigm));
|
|
}
|
|
};
|
|
|
|
} // namespace onnx
|
|
} // namespace MIGRAPHX_INLINE_NS
|
|
} // namespace migraphx
|