frigate/docker/rocm/migraphx/onnx/parse_qlinearunary.cpp
WhiteWolf84 7eefb89bf6 upload
2025-02-03 22:01:20 +01:00

152 lines
5.5 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/common.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
/*
*********************************************************************************
* Reference: see QLinearSigmoid, QLinearLeakyRelu in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearSigmoid
QLinearSigmoid takes quantized input data (Tensor), and quantize parameter for output, and produces
one output data (Tensor) where the function f(x) = quantize(Sigmoid(dequantize(x))), is applied to
the data tensor elementwise. Where the function Sigmoid(x) = 1 / (1 + exp(-x))
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
*****************************************************************************************************
com.microsoft.QLinearLeakyRelu
QLinearLeakyRelu takes quantized input data (Tensor), an argument alpha, and quantize parameter for
output, and produces one output data (Tensor) where the function f(x) = quantize(alpha *
dequantize(x)) for dequantize(x) < 0, f(x) = quantize(dequantize(x)) for dequantize(x) >= 0, is
applied to the data tensor elementwise.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
alpha : float
Coefficient of leakage.
******************************************************************************************************
Generic input layout of QLinear unary operators:
Inputs (4 - 5)
X : T
Input tensor
X_scale : tensor(float)
Input X's scale. It's a scalar, which means a per-tensor/layer quantization.
X_zero_point (optional) : T
Input X's zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
Y_scale : tensor(float) Output Y's scale. It's a scalar, which means
a per-tensor/layer quantization.
Y_zero_point (optional) : T Output Y's zero point. Default value is
0 if it's not specified. It's a scalar, which means a per-tensor/layer quantization.
Outputs
Y : T
Output tensor
Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to 8 bit tensors.
*/
struct parse_qlinearunary : op_parser<parse_qlinearunary>
{
std::vector<op_desc> operators() const
{
return {{"QLinearSigmoid", "sigmoid"}, {"QLinearLeakyRelu", "leaky_relu"}};
}
void check_inputs(const op_desc& opd, const std::vector<instruction_ref>& args) const
{
if(args.size() < 4)
MIGRAPHX_THROW(opd.op_name + ": missing inputs");
const auto& in_x = args[0];
auto sh_x = in_x->get_shape();
auto type_x = sh_x.type();
if(type_x != migraphx::shape::int8_type and type_x != migraphx::shape::uint8_type)
MIGRAPHX_THROW(opd.op_name + ": unsupported input type");
}
instruction_ref parse(const op_desc& opd,
const onnx_parser& parser,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
check_inputs(opd, args);
// X
const auto& in_x = args[0];
const auto& in_scale_x = args[1];
const auto& in_zero_pt_x = args[2];
auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, in_scale_x, in_zero_pt_x, info);
// Y = (op(dequantizelinear(x))
auto op = parser.load(opd.op_name, info);
auto y = info.add_instruction(op, dquant_x);
const auto& in_scale_y = args[3];
// zero_pt for Y is supplied as the last optional argument..
if(args.size() == 5)
return (bcast_qdq_instr("quantizelinear", y, in_scale_y, args[4], info));
// if no zero_pt: just broadcast the scale..
auto bcast_scale_sigm = bcast_scalar_instr(y->get_shape(), in_scale_y, info);
return (info.add_instruction(migraphx::make_op("quantizelinear"), y, bcast_scale_sigm));
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx