frigate/docker/rocm/migraphx/onnx/parse_loop.cpp
WhiteWolf84 7eefb89bf6 upload
2025-02-03 22:01:20 +01:00

106 lines
4.0 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/onnx_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
struct parse_loop : op_parser<parse_loop>
{
std::vector<op_desc> operators() const { return {{"Loop"}}; }
std::vector<instruction_ref> parse(const op_desc& /*opd*/,
onnx_parser& parser,
const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const
{
// default value of the max_iter_num
int64_t max_iterations = parser.max_loop_iterations;
// iteration input is empty
if(args.at(0)->name() == "undefined")
{
shape iter_s{shape::int64_type};
args[0] = info.add_literal(literal(iter_s, {max_iterations}));
}
else
{
auto arg_iters = args.at(0)->eval();
if(not arg_iters.empty())
{
max_iterations = arg_iters.at<int64_t>();
}
}
// cap max_iter because loop uses static shapes with max_iter size and huge numbers
// here can cause overflow
if(max_iterations > parser.limit_max_iterations)
{
std::cerr << "WARNING: PARSE_LOOP max_iterations exceeds the maximum loop "
"iterations limit, it will be changed from "
<< max_iterations << " to " << parser.limit_max_iterations << ".\n";
max_iterations = parser.limit_max_iterations;
}
// condition input is empty
if(args.at(1)->name() == "undefined")
{
shape cond_s{shape::bool_type};
args[1] = info.add_literal(literal(cond_s, {true}));
}
// retrieve the subgraph
const auto& sub_graph = info.attributes.at("body").g();
std::string mod_name = info.name + "_loop";
module_ref sub_mod = parser.prog.create_module(mod_name);
// parse the sub_graph
(void)parser.parse_graph(sub_mod, sub_graph);
auto ret = info.add_instruction(
make_op("loop", {{"max_iterations", max_iterations}}), args, {sub_mod});
auto out_s = ret->get_shape();
assert(out_s.type() == shape::tuple_type);
const auto& vec_shapes = out_s.sub_shapes();
std::vector<instruction_ref> out_inss;
for(std::size_t i = 0; i < vec_shapes.size(); ++i)
{
auto r = info.add_instruction(make_op("get_tuple_elem", {{"index", i}}), ret);
out_inss.push_back(r);
}
return out_inss;
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx