mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 01:17:06 +03:00
157 lines
6.7 KiB
C++
157 lines
6.7 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015-2025 Advanced Micro Devices, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <iterator>
|
|
#include <migraphx/onnx/op_parser.hpp>
|
|
#include <migraphx/ranges.hpp>
|
|
#include <migraphx/instruction.hpp>
|
|
#include <migraphx/make_op.hpp>
|
|
#include <migraphx/env.hpp>
|
|
|
|
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_FP16_INSTANCENORM_CONVERT);
|
|
|
|
namespace migraphx {
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
|
namespace onnx {
|
|
|
|
struct parse_instancenorm : op_parser<parse_instancenorm>
|
|
{
|
|
std::set<shape::type_t> valid_types = {
|
|
shape::float_type, shape::half_type, shape::double_type, shape::bf16_type};
|
|
|
|
std::vector<op_desc> operators() const { return {{"InstanceNormalization"}}; }
|
|
|
|
instruction_ref parse(const op_desc& opd,
|
|
const onnx_parser& parser,
|
|
onnx_parser::node_info info,
|
|
std::vector<instruction_ref> oargs) const
|
|
{
|
|
// y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
|
|
// mean = reduce_mean({D1, D2, ... Dk}, x)
|
|
// variance = reduce_mean({D1, D2, ... Dk}, (x - mean)^2)
|
|
// Convert fp16 to fp32 to workaround for FP16 accuracy issues with reduce_mean/variance.
|
|
bool convert_fp16 = true;
|
|
if(enabled(MIGRAPHX_DISABLE_FP16_INSTANCENORM_CONVERT{}))
|
|
{
|
|
convert_fp16 = false;
|
|
}
|
|
float epsilon = 1e-5f;
|
|
if(contains(info.attributes, "epsilon"))
|
|
{
|
|
epsilon = parser.parse_value(info.attributes.at("epsilon")).at<float>();
|
|
}
|
|
auto dtype = oargs[0]->get_shape().type();
|
|
auto literal_dtype = dtype;
|
|
std::vector<instruction_ref> args;
|
|
// cppcheck-suppress knownConditionTrueFalse
|
|
if(dtype == shape::half_type and convert_fp16)
|
|
{
|
|
std::transform(oargs.begin(), oargs.end(), std::back_inserter(args), [&](const auto i) {
|
|
return info.add_instruction(
|
|
make_op("convert", {{"target_type", shape::float_type}}), i);
|
|
});
|
|
literal_dtype = shape::float_type;
|
|
}
|
|
else
|
|
{
|
|
args = oargs;
|
|
}
|
|
|
|
auto x = args[0];
|
|
auto scale = args[1];
|
|
auto bias = args[2];
|
|
if(not contains(valid_types, dtype))
|
|
MIGRAPHX_THROW(opd.onnx_name + ": invalid output type: " + std::to_string(dtype) +
|
|
". Valid types are 1 (float), 10 (half), and 11 (double).");
|
|
|
|
auto ndims = x->get_shape().ndim();
|
|
assert(ndims >= 2);
|
|
auto kdims = ndims - 2;
|
|
std::vector<int64_t> axes(kdims);
|
|
std::iota(axes.begin(), axes.end(), 2);
|
|
auto mean = info.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x);
|
|
|
|
// Use add_common_op() to insert multibroadcast/convert instructions where needed when
|
|
// inputs may be either static or dynamic.
|
|
auto l1 = info.add_common_op("sub", x, mean);
|
|
// for the fp16, if not converting to fp32 then divide `x` and `mean` by `sqrt(n)` and take
|
|
// reduce_sum to calculate variance i.e.
|
|
// var = reduce_sum((x/s_n - mean/s_n)^2) where s_n = sqrt(n)
|
|
std::string reduce_op_name =
|
|
(dtype == shape::half_type and not convert_fp16) ? "reduce_sum" : "reduce_mean";
|
|
if(dtype == shape::half_type and not convert_fp16)
|
|
{
|
|
if(x->get_shape().dynamic())
|
|
{
|
|
MIGRAPHX_THROW("PARSE_INSTANCENORM: half type not supported with dynamic shape "
|
|
"unless convert_fp16 is TRUE");
|
|
}
|
|
auto dims = x->get_shape().lens();
|
|
double n =
|
|
std::accumulate(dims.begin() + 2, dims.end(), 1, [&](const auto& i, const auto& j) {
|
|
return i * j;
|
|
});
|
|
n = 1.0 / std::sqrt(n);
|
|
auto n_literal = info.add_literal(literal{dtype, {n}});
|
|
x = info.add_common_op("mul", {x, n_literal});
|
|
}
|
|
auto l0 = info.add_common_op("sqdiff", x, mean);
|
|
auto variance = info.add_instruction(make_op(reduce_op_name, {{"axes", axes}}), l0);
|
|
auto epsilon_literal = info.add_literal(literal{shape{literal_dtype}, {epsilon}});
|
|
auto l2 = info.add_common_op("add", variance, epsilon_literal);
|
|
|
|
auto l3 = info.add_instruction(make_op("rsqrt"), l2);
|
|
auto l4 = info.add_common_op("mul", l1, l3);
|
|
|
|
// add_common_op() doesn't apply the plain broadcast op, so we add that op explicitly for
|
|
// both scale and bias.
|
|
instruction_ref scale_bcast;
|
|
instruction_ref bias_bcast;
|
|
if(x->get_shape().dynamic())
|
|
{
|
|
scale_bcast = info.add_instruction(make_op("broadcast", {{"axis", 1}}), scale, x);
|
|
bias_bcast = info.add_instruction(make_op("broadcast", {{"axis", 1}}), bias, x);
|
|
}
|
|
else
|
|
{
|
|
auto dims = x->get_shape().lens();
|
|
scale_bcast = info.add_instruction(
|
|
make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), scale);
|
|
bias_bcast =
|
|
info.add_instruction(make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), bias);
|
|
}
|
|
auto l5 = info.add_instruction(make_op("mul"), l4, scale_bcast);
|
|
auto ret = info.add_instruction(make_op("add"), l5, bias_bcast);
|
|
if(dtype == shape::half_type and convert_fp16)
|
|
{
|
|
return info.add_instruction(make_op("convert", {{"target_type", shape::half_type}}),
|
|
ret);
|
|
}
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
} // namespace onnx
|
|
} // namespace MIGRAPHX_INLINE_NS
|
|
} // namespace migraphx
|