frigate/docker/rocm/migraphx/onnx/parse_imagescalar.cpp
WhiteWolf84 7eefb89bf6 upload
2025-02-03 22:01:20 +01:00

74 lines
3.0 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
struct parse_imagescalar : op_parser<parse_imagescalar>
{
std::vector<op_desc> operators() const { return {{"ImageScaler"}}; }
instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& parser,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
{
float scale = 1.0;
std::vector<float> bias{};
if(contains(info.attributes, "scale"))
{
scale = parser.parse_value(info.attributes.at("scale")).at<float>();
}
if(contains(info.attributes, "bias"))
{
auto&& bias_floats = info.attributes["bias"].floats();
bias = std::vector<float>(bias_floats.begin(), bias_floats.end());
}
auto input_shape = args.front()->get_shape();
auto const& input_lens = input_shape.lens();
auto input_type = input_shape.type();
auto scale_val = info.add_literal(literal{shape{input_type}, {scale}});
auto bias_vals = info.add_literal(literal{shape{input_type, {bias.size()}}, bias});
auto scale_tensor = info.add_instruction(
migraphx::make_op("scalar", {{"scalar_bcst_dims", input_lens}}), scale_val);
auto img_scaled =
info.add_instruction(migraphx::make_op("mul"), args.front(), scale_tensor);
auto bias_bcast = info.add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", input_lens}}), bias_vals);
return info.add_instruction(migraphx::make_op("add"), img_scaled, bias_bcast);
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx