mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 01:17:06 +03:00
130 lines
5.3 KiB
C++
130 lines
5.3 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <migraphx/onnx/op_parser.hpp>
|
|
#include <migraphx/ranges.hpp>
|
|
#include <migraphx/make_op.hpp>
|
|
#include <migraphx/instruction.hpp>
|
|
|
|
namespace migraphx {
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
|
namespace onnx {
|
|
|
|
struct parse_groupnorm : op_parser<parse_groupnorm>
|
|
{
|
|
std::vector<op_desc> operators() const { return {{"GroupNormalization"}}; }
|
|
|
|
instruction_ref parse(const op_desc& /*opd*/,
|
|
const onnx_parser& parser,
|
|
const onnx_parser::node_info& info,
|
|
std::vector<instruction_ref> args) const
|
|
{
|
|
float epsilon = 1e-5f;
|
|
if(contains(info.attributes, "epsilon"))
|
|
{
|
|
epsilon = parser.parse_value(info.attributes.at("epsilon")).at<float>();
|
|
}
|
|
size_t num_groups;
|
|
if(contains(info.attributes, "num_groups"))
|
|
{
|
|
num_groups = parser.parse_value(info.attributes.at("num_groups")).at<size_t>();
|
|
}
|
|
else
|
|
{
|
|
MIGRAPHX_THROW("PARSE_GROUPNORM: num_groups must be available");
|
|
}
|
|
|
|
if(args.size() != 3)
|
|
{
|
|
MIGRAPHX_THROW("PARSE_GROUPNORM: invalid input count");
|
|
}
|
|
|
|
auto x = args.at(0);
|
|
auto scale = args.at(1);
|
|
auto bias = args.at(2);
|
|
|
|
auto x_shape = x->get_shape();
|
|
auto x_dtype = x_shape.type();
|
|
auto x_dims = x_shape.lens();
|
|
|
|
if(x_shape.ndim() <= 2)
|
|
{
|
|
MIGRAPHX_THROW("PARSE_GROUPNORM: invalid input shape");
|
|
}
|
|
|
|
auto c = x_shape.lens().at(1);
|
|
if(c % num_groups != 0)
|
|
{
|
|
MIGRAPHX_THROW(
|
|
"PARSE_GROUPNORM: num_groups should be a divisor of the number of channels");
|
|
}
|
|
auto group_size = c / num_groups;
|
|
if(scale->get_shape().ndim() != 1 or scale->get_shape().lens().at(0) != num_groups)
|
|
{
|
|
MIGRAPHX_THROW("PARSE_GROUPNORM: scale tensor shape should be num_groups");
|
|
}
|
|
if(bias->get_shape().ndim() != 1 or bias->get_shape().lens().at(0) != num_groups)
|
|
{
|
|
MIGRAPHX_THROW("PARSE_GROUPNORM: bias tensor shape should be num_groups");
|
|
}
|
|
|
|
// Original shape: N x C x D1 x ... x Dn
|
|
// New shape: N x num_groups x C // num_groups x D1 x ... x Dn
|
|
|
|
std::vector<size_t> dims = {x_dims.at(0), num_groups, group_size};
|
|
std::copy(x_dims.begin() + 2, x_dims.end(), std::back_inserter(dims));
|
|
auto x_reshaped = info.add_instruction(make_op("reshape", {{"dims", dims}}), x);
|
|
|
|
// Axes for D1 x ... x Dn
|
|
std::vector<size_t> axes(dims.size() - 2);
|
|
std::iota(axes.begin(), axes.end(), 2);
|
|
|
|
// y = (x - mean) * rsqrt(variance + epsilon) * scale + bias
|
|
// mean = reduce_mean({D1, D2, ... Dk}, x)
|
|
// variance = reduce_mean({D1, D2, ... Dk}, (x - mean)^2)
|
|
|
|
auto mean = info.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x_reshaped);
|
|
auto x_sub_mean = info.add_common_op("sub", x_reshaped, mean);
|
|
auto x_sqdiff_mean = info.add_common_op("sqdiff", x_reshaped, mean);
|
|
auto variance =
|
|
info.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x_sqdiff_mean);
|
|
epsilon =
|
|
(x_dtype == migraphx::shape::half_type and std::abs(epsilon) < 1e-7) ? 1e-7 : epsilon;
|
|
auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_dtype}, {epsilon}});
|
|
auto var_eps = info.add_common_op("add", variance, eps);
|
|
auto rsqrt = info.add_instruction(make_op("rsqrt"), var_eps);
|
|
auto result = info.add_common_op("mul", x_sub_mean, rsqrt);
|
|
auto scale_bcast =
|
|
info.add_instruction(make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), scale);
|
|
auto bias_bcast =
|
|
info.add_instruction(make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), bias);
|
|
auto scaled = info.add_instruction(make_op("mul"), result, scale_bcast);
|
|
auto y = info.add_instruction(make_op("add"), scaled, bias_bcast);
|
|
return info.add_instruction(make_op("reshape", {{"dims", x_dims}}), y);
|
|
}
|
|
};
|
|
|
|
} // namespace onnx
|
|
} // namespace MIGRAPHX_INLINE_NS
|
|
} // namespace migraphx
|