frigate/docker/rocm/migraphx/onnx/parse_gelu.cpp
WhiteWolf84 7eefb89bf6 upload
2025-02-03 22:01:20 +01:00

142 lines
5.4 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
instruction_ref parse_gelu_erf(const onnx_parser::node_info& info, instruction_ref x)
{
auto x_type = x->get_shape().type();
auto half = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {0.5f}});
auto one = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {1.0f}});
auto sqrt2 =
info.add_literal(migraphx::literal{migraphx::shape{x_type}, {static_cast<float>(M_SQRT2)}});
auto mul_half = info.add_common_op("mul", x, half);
auto div = info.add_common_op("div", x, sqrt2);
auto erf = info.add_instruction(migraphx::make_op("erf"), div);
auto add_one = info.add_common_op("add", erf, one);
return info.add_common_op("mul", mul_half, add_one);
}
instruction_ref parse_gelu_tanh(const onnx_parser::node_info& info, instruction_ref x, bool fast)
{
auto x_type = x->get_shape().type();
auto fit_const_val = fast ? 0.035677 : 0.044715;
auto fit_const = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {fit_const_val}});
auto sqrt_2_rpi_val = fast ? 0.797885 : sqrt(M_2_PI);
auto sqrt_2_rpi =
info.add_literal(migraphx::literal{migraphx::shape{x_type}, {sqrt_2_rpi_val}});
auto one = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {1.0f}});
auto half = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {0.5f}});
auto three = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {3.0f}});
// [0.044715|0.035677] * x^3
auto pow0 = info.add_common_op("pow", x, three);
auto mul0 = info.add_common_op("mul", pow0, fit_const);
instruction_ref tanh_in;
if(fast)
{
// approx = 0.797885 * x + 0.035677 * x^3
auto mul1 = info.add_common_op("mul", sqrt_2_rpi, x);
tanh_in = info.add_common_op("add", mul0, mul1);
}
else
{
// approx = sqrt(2/pi) * (x + 0.044715 * x^3
auto add0 = info.add_common_op("add", mul0, x);
tanh_in = info.add_common_op("mul", add0, sqrt_2_rpi);
}
// 0.5 * x * (1 + Tanh(approx))
auto tanh0 = info.add_instruction(migraphx::make_op("tanh"), tanh_in);
auto add1 = info.add_common_op("add", tanh0, one);
auto mul2 = info.add_common_op("mul", x, half);
return info.add_common_op("mul", add1, mul2);
}
struct parse_gelu : op_parser<parse_gelu>
{
std::vector<op_desc> operators() const { return {{"BiasGelu"}, {"FastGelu"}, {"Gelu"}}; }
instruction_ref parse(const op_desc& opd,
const onnx_parser& /*parser*/,
const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const
{
std::string approximate = "none";
auto x = args[0];
auto x_type = x->get_shape().type();
auto fast = false;
if(not is_type_float(x_type))
{
MIGRAPHX_THROW("PARSE_GELU: input tensor is not a floating type");
}
if(contains(info.attributes, "approximate"))
{
approximate = info.attributes.at("approximate").s();
}
if(opd.onnx_name == "FastGelu")
{
if(x_type == migraphx::shape::double_type)
{
MIGRAPHX_THROW("PARSE_GELU: FastGelu can't accept input with double precision");
}
// FastGelu uses tanh approximation
approximate = "tanh";
fast = true;
}
if(args.size() > 1 and args.at(1)->name() != "undefined")
{
auto y = args[1];
auto y_type = y->get_shape().type();
if(y_type != x_type)
{
MIGRAPHX_THROW("PARSE_GELU: mismatching input tensor types");
}
x = info.add_common_op("add", x, y);
}
if(approximate == "tanh")
{
return parse_gelu_tanh(info, x, fast);
}
else
{
return parse_gelu_erf(info, x);
}
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx