frigate/docker/rocm/migraphx/onnx/parse_conv_transpose.cpp
WhiteWolf84 7eefb89bf6 upload
2025-02-03 22:01:20 +01:00

194 lines
8.0 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/conv.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
template <class T>
std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
{
std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
return output_vector;
}
struct parse_conv_transpose : op_parser<parse_conv_transpose>
{
std::vector<op_desc> operators() const { return {{"ConvTranspose"}}; }
instruction_ref parse(const op_desc& opd,
const onnx_parser& parser,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
{
operation op = make_op("convolution_backwards");
value values = op.to_value();
auto l0 = args[0];
std::vector<std::int64_t> padding;
bool asym_padding = false;
assert(l0->get_shape().ndim() > 2);
auto kdims = l0->get_shape().ndim() - 2;
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode(info, opd.onnx_name);
if(contains(info.attributes, "pads"))
{
copy(info.attributes["pads"].ints(), std::back_inserter(padding));
asym_padding = is_asym_padding(padding);
size_t pad_ndims = padding.size() / 2;
if(not asym_padding)
{
check_attr_sizes(kdims, pad_ndims, "PARSE_CONV_TRANSPOSE: inconsistent paddings");
values["padding"].clear();
std::transform(padding.begin(),
padding.begin() + pad_ndims,
std::back_inserter(values["padding"]),
[](auto pad_val) { return pad_val; });
}
else if(l0->get_shape().dynamic())
{
MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: asymmetric padding (padding_L != padding_R) "
"not supported with dynamic shapes");
}
else
{
// set padding to 0s, asym_padding handled by parser with slice
// TODO changing parser and op to do asym padding in op
values["padding"] = std::vector<std::size_t>(pad_ndims, 0);
}
}
if(contains(info.attributes, "strides"))
{
values["stride"].clear();
copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
check_attr_sizes(
kdims, values["stride"].size(), "PARSE_CONV_TRANSPOSE: inconsistent strides");
}
if(contains(info.attributes, "dilations"))
{
values["dilation"].clear();
copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
check_attr_sizes(
kdims, values["dilation"].size(), "PARSE_CONV_TRANSPOSE: inconsistent dilations");
}
// TODO: auto padding needs to be implemented for this parser and operator
if(contains(info.attributes, "auto_pad") and
to_upper(info.attributes.at("auto_pad").s()) != "NOTSET")
{
MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: auto padding not supported");
}
if(contains(info.attributes, "group"))
{
values["group"] = parser.parse_value(info.attributes.at("group")).at<int>();
}
recalc_conv_attributes(values, kdims);
op.from_value(values);
auto l1 = info.add_instruction(op, l0, args[1]);
if(asym_padding)
{
std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
std::vector<int64_t> curr_shape(dims.begin() + 2, dims.end());
std::vector<int64_t> axes(kdims);
std::iota(axes.begin(), axes.end(), 2); // ignore first 2 dims
auto pad_kdim_start = padding.begin() + kdims;
std::vector<int64_t> starts(padding.begin(), pad_kdim_start);
std::vector<int64_t> ends{};
std::transform(curr_shape.begin(),
curr_shape.end(),
pad_kdim_start,
std::back_inserter(ends),
[](auto curr_dim, auto pad_dim) { return curr_dim - pad_dim; });
l1 = info.add_instruction(
make_op("slice", {{"axes", axes}, {"starts", starts}, {"ends", ends}}), l1);
}
// TODO, should check output_padding < (strides or dilations)
if(contains(info.attributes, "output_padding") and
not contains(info.attributes, "output_shape"))
{
size_t non_kdims = l1->get_shape().ndim() * 2 - kdims;
std::vector<int64_t> output_padding(non_kdims, 0);
copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
check_attr_sizes(kdims,
output_padding.size() - non_kdims,
"PARSE_CONV_TRANSPOSE: inconsistent output padding");
l1 = info.add_instruction(make_op("pad", {{"pads", output_padding}}), l1);
}
// TODO, doing unnecessary calcuations with this. Could instead
// calculate the padding to conv_transpose that would give the output_shape.
if(contains(info.attributes, "output_shape"))
{
if(l1->get_shape().dynamic())
{
MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: output_shape attribute and dynamic shapes "
"not supported");
}
std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
std::vector<int64_t> curr_shape(dims.begin() + 2, dims.end());
std::vector<int64_t> output_shape;
copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
check_attr_sizes(
kdims, output_shape.size(), "PARSE_CONV_TRANSPOSE: inconsistent output shape");
if(curr_shape != output_shape)
{
std::vector<int64_t> target_padding(dims.size() * 2 - kdims, 0);
std::transform(output_shape.begin(),
output_shape.end(),
curr_shape.begin(),
std::back_inserter(target_padding),
[](auto out_dim, auto curr_dim) { return out_dim - curr_dim; });
l1 = info.add_instruction(make_op("pad", {{"pads", target_padding}}), l1);
}
}
return info.add_bias(args, l1, 1);
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx