mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 01:17:06 +03:00
101 lines
4.7 KiB
C++
101 lines
4.7 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <migraphx/onnx/op_parser.hpp>
|
|
#include <migraphx/ranges.hpp>
|
|
#include <migraphx/make_op.hpp>
|
|
#include <migraphx/instruction.hpp>
|
|
|
|
namespace migraphx {
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
|
namespace onnx {
|
|
|
|
struct parse_batchnorm : op_parser<parse_batchnorm>
|
|
{
|
|
std::vector<op_desc> operators() const { return {{"BatchNormalization"}}; }
|
|
|
|
instruction_ref parse(const op_desc& /*opd*/,
|
|
const onnx_parser& parser,
|
|
const onnx_parser::node_info& info,
|
|
std::vector<instruction_ref> args) const
|
|
{
|
|
float epsilon = 1e-5f;
|
|
if(contains(info.attributes, "epsilon"))
|
|
{
|
|
epsilon = parser.parse_value(info.attributes.at("epsilon")).at<float>();
|
|
}
|
|
auto x_lens = args[0]->get_shape().max_lens();
|
|
auto x_type = args[0]->get_shape().type();
|
|
|
|
if(std::any_of(args.cbegin() + 1, args.cend(), [](auto a) {
|
|
return a->get_shape().lens().size() != 1;
|
|
}))
|
|
{
|
|
MIGRAPHX_THROW("PARSE_BATCHNORM: argument scale, bias, mean, or var rank != 1");
|
|
}
|
|
|
|
auto x_rank = x_lens.size();
|
|
if(x_rank == 1 or x_rank == 2)
|
|
{
|
|
auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {epsilon}});
|
|
auto x_sub_mean = info.add_broadcastable_binary_op("sub", args[0], args[3]);
|
|
auto var_eps = info.add_broadcastable_binary_op("add", args[4], eps);
|
|
auto rsqrt = info.add_instruction(make_op("rsqrt"), var_eps);
|
|
auto mul0 = info.add_broadcastable_binary_op("mul", args[1], rsqrt);
|
|
auto r0 = info.add_broadcastable_binary_op("mul", x_sub_mean, mul0);
|
|
return info.add_broadcastable_binary_op("add", r0, args[2]);
|
|
}
|
|
else if(x_rank > 2)
|
|
{
|
|
// unsqueeze tensors of shape (C) to broadcast correctly
|
|
std::vector<int64_t> unsqueeze_axes(x_lens.size() - 2);
|
|
std::iota(unsqueeze_axes.begin(), unsqueeze_axes.end(), 1);
|
|
auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {epsilon}});
|
|
auto scale_unsqueeze = info.add_instruction(
|
|
migraphx::make_op("unsqueeze", {{"axes", unsqueeze_axes}}), args[1]);
|
|
auto bias_unsqueeze = info.add_instruction(
|
|
migraphx::make_op("unsqueeze", {{"axes", unsqueeze_axes}}), args[2]);
|
|
auto mean_unsqueeze = info.add_instruction(
|
|
migraphx::make_op("unsqueeze", {{"axes", unsqueeze_axes}}), args[3]);
|
|
auto var_unsqueeze = info.add_instruction(
|
|
migraphx::make_op("unsqueeze", {{"axes", unsqueeze_axes}}), args[4]);
|
|
auto x_sub_mean = info.add_broadcastable_binary_op("sub", args[0], mean_unsqueeze);
|
|
auto var_eps = info.add_broadcastable_binary_op("add", var_unsqueeze, eps);
|
|
auto rsqrt = info.add_instruction(make_op("rsqrt"), var_eps);
|
|
auto mul0 = info.add_broadcastable_binary_op("mul", scale_unsqueeze, rsqrt);
|
|
auto r0 = info.add_broadcastable_binary_op("mul", x_sub_mean, mul0);
|
|
return info.add_broadcastable_binary_op("add", r0, bias_unsqueeze);
|
|
}
|
|
else
|
|
{
|
|
// rank == 0
|
|
MIGRAPHX_THROW("PARSE_BATCHNORM: rank " + std::to_string(x_lens.size()) +
|
|
" input tensor, unhandled data format");
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace onnx
|
|
} // namespace MIGRAPHX_INLINE_NS
|
|
} // namespace migraphx
|