mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-18 09:04:28 +03:00
111 lines
4.9 KiB
C++
111 lines
4.9 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <iterator>
|
|
#include <migraphx/eliminate_concat.hpp>
|
|
#include <migraphx/program.hpp>
|
|
#include <migraphx/instruction.hpp>
|
|
#include <migraphx/op/load.hpp>
|
|
#include <migraphx/op/identity.hpp>
|
|
#include <migraphx/iterator_for.hpp>
|
|
#include <migraphx/ranges.hpp>
|
|
#include <migraphx/make_op.hpp>
|
|
|
|
#include <migraphx/dfor.hpp>
|
|
#include <migraphx/tune_axis.hpp>
|
|
|
|
namespace migraphx {
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
|
void eliminate_concat::apply(module& m) const
|
|
{
|
|
for(auto ins : iterator_for(m))
|
|
{
|
|
auto concat_op = concat_opt.get_concat(ins->get_operator());
|
|
// Look for the concat operator
|
|
if(not concat_op.has_value())
|
|
continue;
|
|
// If any inputs are builtin or context free then abort
|
|
// If any inputs are used more than once, then abort since there could
|
|
// be errors due to aliasing
|
|
if(std::any_of(ins->inputs().begin(), ins->inputs().end(), [](auto arg) {
|
|
return arg->name().front() == '@' or
|
|
(arg->get_operator().is_context_free() and
|
|
not contains({"concat", "identity"}, arg->name())) or
|
|
arg->outputs().size() > 1;
|
|
}))
|
|
continue;
|
|
// We can only do this optimization when concat axis is either the leftmost
|
|
// axis OR the sizes to the left of this axis are all equal to 1
|
|
// Since we've already checked that the non-axis dimensions are identical
|
|
// we only need to check the first input
|
|
auto lens = ins->inputs().front()->get_shape().lens();
|
|
std::size_t axis_index = tune_axis(lens.size(), concat_op->axis, concat_op->name());
|
|
if(axis_index == 0 or
|
|
std::all_of(lens.begin(), lens.begin() + axis_index, [](auto x) { return x == 1; }))
|
|
{
|
|
// Last input should be an allocation
|
|
auto last = ins->inputs().back();
|
|
if(last->name() != concat_opt.allocate())
|
|
continue;
|
|
// Where are the allocations for the tensors to be concatenated?
|
|
std::vector<instruction_ref> allocations;
|
|
|
|
std::transform(
|
|
ins->inputs().begin(),
|
|
std::prev(ins->inputs().end()),
|
|
std::back_inserter(allocations),
|
|
[&](instruction_ref x) { return instruction::get_output_alias(x, true); });
|
|
|
|
if(std::any_of(allocations.begin(), allocations.end(), [&](auto x) {
|
|
return x->name() != concat_opt.allocate();
|
|
}))
|
|
continue;
|
|
|
|
// Need to sort the allocations, so that we know where to
|
|
// insert the "super"-allocation
|
|
auto sorted_allocations = allocations;
|
|
std::sort(sorted_allocations.begin(),
|
|
sorted_allocations.end(),
|
|
[&](instruction_ref x, instruction_ref y) {
|
|
return std::distance(m.begin(), x) < std::distance(m.begin(), y);
|
|
});
|
|
// Move "super" allocation to the front
|
|
auto first = sorted_allocations.front();
|
|
auto super = m.move_instruction(last, first);
|
|
// Replace each allocation with a load
|
|
std::size_t offset = 0;
|
|
for(auto alloc : allocations)
|
|
{
|
|
op::load op{alloc->get_shape(), offset};
|
|
m.replace_instruction(alloc, op, {super});
|
|
offset += alloc->get_shape().bytes();
|
|
}
|
|
std::vector<instruction_ref> args = {super};
|
|
std::copy(ins->inputs().begin(), ins->inputs().end() - 1, std::back_inserter(args));
|
|
m.replace_instruction(ins, migraphx::make_op("identity"), args);
|
|
}
|
|
}
|
|
}
|
|
} // namespace MIGRAPHX_INLINE_NS
|
|
} // namespace migraphx
|