frigate/frigate/object_detection.py

230 lines
6.8 KiB
Python

import datetime
import logging
import multiprocessing as mp
import os
import queue
import signal
import threading
from abc import ABC, abstractmethod
import numpy as np
from setproctitle import setproctitle
from frigate.config import DetectorTypeEnum
from frigate.detectors.edgetpu_tfl import EdgeTpuTfl
from frigate.detectors.cpu_tfl import CpuTfl
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen, load_labels
logger = logging.getLogger(__name__)
class ObjectDetector(ABC):
@abstractmethod
def detect(self, tensor_input, threshold=0.4):
pass
class LocalObjectDetector(ObjectDetector):
def __init__(
self,
det_type=DetectorTypeEnum.cpu,
det_device=None,
model_path=None,
num_threads=3,
labels=None,
):
self.fps = EventsPerSecond()
if labels is None:
self.labels = {}
else:
self.labels = load_labels(labels)
if det_type == DetectorTypeEnum.edgetpu:
self.detectApi = EdgeTpuTfl(det_device=det_device, model_path=model_path)
else:
logger.warning(
"CPU detectors are not recommended and should only be used for testing or for trial purposes."
)
self.detectApi = CpuTfl(model_path=model_path, num_threads=num_threads)
def detect(self, tensor_input, threshold=0.4):
detections = []
raw_detections = self.detect_raw(tensor_input)
for d in raw_detections:
if d[1] < threshold:
break
detections.append(
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
)
self.fps.update()
return detections
def detect_raw(self, tensor_input):
return self.detectApi.detect_raw(tensor_input=tensor_input)
def run_detector(
name: str,
detection_queue: mp.Queue,
out_events: dict[str, mp.Event],
avg_speed,
start,
model_path,
model_shape,
det_type,
det_device,
num_threads,
):
threading.current_thread().name = f"detector:{name}"
logger = logging.getLogger(f"detector.{name}")
logger.info(f"Starting detection process: {os.getpid()}")
setproctitle(f"frigate.detector.{name}")
listen()
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
frame_manager = SharedMemoryFrameManager()
object_detector = LocalObjectDetector(
det_type=det_type,
det_device=det_device,
model_path=model_path,
num_threads=num_threads,
)
outputs = {}
for name in out_events.keys():
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
out_np = np.ndarray((20, 6), dtype=np.float32, buffer=out_shm.buf)
outputs[name] = {"shm": out_shm, "np": out_np}
while not stop_event.is_set():
try:
connection_id = detection_queue.get(timeout=5)
except queue.Empty:
continue
input_frame = frame_manager.get(
connection_id, (1, model_shape[0], model_shape[1], 3)
)
if input_frame is None:
continue
# detect and send the output
start.value = datetime.datetime.now().timestamp()
detections = object_detector.detect_raw(input_frame)
duration = datetime.datetime.now().timestamp() - start.value
outputs[connection_id]["np"][:] = detections[:]
out_events[connection_id].set()
start.value = 0.0
avg_speed.value = (avg_speed.value * 9 + duration) / 10
class ObjectDetectProcess:
def __init__(
self,
name,
detection_queue,
out_events,
model_path,
model_shape,
det_type=None,
det_device=None,
num_threads=3,
):
self.name = name
self.out_events = out_events
self.detection_queue = detection_queue
self.avg_inference_speed = mp.Value("d", 0.01)
self.detection_start = mp.Value("d", 0.0)
self.detect_process = None
self.model_path = model_path
self.model_shape = model_shape
self.det_type = det_type
self.det_device = det_device
self.num_threads = num_threads
self.start_or_restart()
def stop(self):
self.detect_process.terminate()
logging.info("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
logging.info("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
def start_or_restart(self):
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.stop()
self.detect_process = mp.Process(
target=run_detector,
name=f"detector:{self.name}",
args=(
self.name,
self.detection_queue,
self.out_events,
self.avg_inference_speed,
self.detection_start,
self.model_path,
self.model_shape,
self.det_type,
self.det_device,
self.num_threads,
),
)
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector:
def __init__(self, name, labels, detection_queue, event, model_shape):
self.labels = labels
self.name = name
self.fps = EventsPerSecond()
self.detection_queue = detection_queue
self.event = event
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
self.np_shm = np.ndarray(
(1, model_shape[0], model_shape[1], 3), dtype=np.uint8, buffer=self.shm.buf
)
self.out_shm = mp.shared_memory.SharedMemory(
name=f"out-{self.name}", create=False
)
self.out_np_shm = np.ndarray((20, 6), dtype=np.float32, buffer=self.out_shm.buf)
def detect(self, tensor_input, threshold=0.4):
detections = []
# copy input to shared memory
self.np_shm[:] = tensor_input[:]
self.event.clear()
self.detection_queue.put(self.name)
result = self.event.wait(timeout=10.0)
# if it timed out
if result is None:
return detections
for d in self.out_np_shm:
if d[1] < threshold:
break
detections.append(
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
)
self.fps.update()
return detections
def cleanup(self):
self.shm.unlink()
self.out_shm.unlink()