mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 09:27:06 +03:00
126 lines
5.0 KiB
C++
126 lines
5.0 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <migraphx/tf/op_parser.hpp>
|
|
#include <migraphx/ranges.hpp>
|
|
#include <migraphx/instruction.hpp>
|
|
#include <migraphx/pad_calc.hpp>
|
|
#include <migraphx/op/convolution.hpp>
|
|
#include <migraphx/make_op.hpp>
|
|
|
|
namespace migraphx {
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
|
namespace tf {
|
|
|
|
struct parse_depthwiseconv : op_parser<parse_depthwiseconv>
|
|
{
|
|
bool transpose() const { return true; }
|
|
std::vector<op_desc> operators() const { return {{"DepthwiseConv2dNative"}}; }
|
|
|
|
instruction_ref parse(const op_desc& /*opd*/,
|
|
const tf_parser& parser,
|
|
tf_parser::node_info info,
|
|
std::vector<instruction_ref> args) const
|
|
{
|
|
op::convolution op;
|
|
size_t num_channels = args[0]->get_shape().lens()[1];
|
|
op.group = num_channels;
|
|
|
|
if(contains(info.attributes, "strides"))
|
|
{
|
|
std::vector<size_t> stride;
|
|
copy(info.attributes.at("strides").list().i(), std::back_inserter(stride));
|
|
parser.reorder_data(stride);
|
|
if(stride.size() != 4)
|
|
{
|
|
MIGRAPHX_THROW("strides should have 4 values");
|
|
}
|
|
op.stride[0] = stride[2];
|
|
op.stride[1] = stride[3];
|
|
}
|
|
|
|
auto weights = parser.to_kcxy(args[1]);
|
|
if(contains(info.attributes, "dilations"))
|
|
{
|
|
std::vector<size_t> dilation;
|
|
copy(info.attributes.at("dilations").list().i(), std::back_inserter(dilation));
|
|
parser.reorder_data(dilation);
|
|
if(dilation.size() != 4)
|
|
{
|
|
MIGRAPHX_THROW("dilation should have 4 values");
|
|
}
|
|
op.dilation[0] = dilation[2];
|
|
op.dilation[1] = dilation[3];
|
|
}
|
|
|
|
auto l0 = args[0];
|
|
if(contains(info.attributes, "padding"))
|
|
{
|
|
const std::string& pad_mode = info.attributes.at("padding").s();
|
|
|
|
if(pad_mode.find("SAME") != std::string::npos)
|
|
{
|
|
std::vector<size_t> weight_dims = weights->get_shape().lens();
|
|
size_t weight_h = weight_dims[2];
|
|
size_t weight_w = weight_dims[3];
|
|
|
|
auto input_dims = l0->get_shape().lens();
|
|
std::vector<int64_t> pads(input_dims.size());
|
|
calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
|
|
calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);
|
|
|
|
if(pads[0] != pads[2] or pads[1] != pads[3])
|
|
{
|
|
std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
|
|
l0 = info.add_instruction(migraphx::make_op("pad", {{"pads", padding}}), l0);
|
|
}
|
|
else
|
|
{
|
|
op.padding[0] = pads[0];
|
|
op.padding[1] = pads[1];
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<int64_t> new_weights_shape;
|
|
copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
|
|
|
|
// weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
|
|
// out_channels is equal to the multiplier. Adjust by inserting a reshape and
|
|
// setting in_channels to 1
|
|
int64_t multiplier = new_weights_shape[0];
|
|
int64_t out_channels = num_channels * multiplier;
|
|
new_weights_shape[0] = out_channels;
|
|
new_weights_shape[1] = 1;
|
|
// Make sure weights are contiguous before doing reshape
|
|
auto new_weights = info.add_instruction(make_op("reshape", {{"dims", new_weights_shape}}),
|
|
info.make_contiguous(weights));
|
|
|
|
return info.add_instruction(op, {l0, new_weights});
|
|
}
|
|
};
|
|
|
|
} // namespace tf
|
|
} // namespace MIGRAPHX_INLINE_NS
|
|
} // namespace migraphx
|