frigate/docker/rocm/migraphx/targets/cpu/deconvolution.cpp
WhiteWolf84 931b31452a upload2
2025-02-03 22:44:02 +01:00

77 lines
2.9 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/config.hpp>
#include <migraphx/cpu/dnnl.hpp>
#include <migraphx/op/convolution_backwards.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace cpu {
struct dnnl_deconvolution
: dnnl_extend_op<dnnl_deconvolution, dnnl::deconvolution_forward, op::convolution_backwards>
{
std::vector<int> arg_map(int) const
{
return {MIGRAPHX_DNNL_PREFIX(ARG_SRC), MIGRAPHX_DNNL_PREFIX(ARG_WEIGHTS)};
}
shape adjust_shape(const shape& x, int i, const shape& output) const
{
auto s = base_adjust_shape(x, output);
if(i == 1)
{
// The input and output channels are flipped for dnnl
auto lens = s.lens();
std::swap(lens[0], lens[1]);
auto strides = s.strides();
std::swap(strides[0], strides[1]);
return {s.type(), lens, strides};
}
return s;
}
dnnl::deconvolution_forward::desc
get_desc(const std::unordered_map<int, dnnl::memory::desc>& m) const
{
// In DNNL dilation is zero-based
auto dilation = op.dilation;
std::transform(
dilation.begin(), dilation.end(), dilation.begin(), [](auto x) { return x - 1; });
return {dnnl::prop_kind::forward_inference,
dnnl::algorithm::deconvolution_direct,
m.at(MIGRAPHX_DNNL_PREFIX(ARG_SRC)),
m.at(MIGRAPHX_DNNL_PREFIX(ARG_WEIGHTS)),
m.at(MIGRAPHX_DNNL_PREFIX(ARG_DST)),
to_dnnl_dims(op.stride),
to_dnnl_dims(dilation),
to_dnnl_dims(op.padding),
to_dnnl_dims(op.padding)};
}
};
} // namespace cpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx