frigate/docker/rocm/migraphx/include/migraphx/algorithm.hpp
WhiteWolf84 7eefb89bf6 upload
2025-02-03 22:01:20 +01:00

206 lines
6.1 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_ALGORITHM_HPP
#define MIGRAPHX_GUARD_RTGLIB_ALGORITHM_HPP
#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <class Iterator, class Output, class Predicate, class F>
void transform_if(Iterator start, Iterator last, Output out, Predicate pred, F f)
{
while(start != last)
{
if(pred(*start))
{
*out = f(*start);
++out;
}
++start;
}
}
/// Similiar to std::accumulate but a projection can be applied to the elements first
template <class Iterator, class T, class BinaryOp, class UnaryOp>
T transform_accumulate(Iterator first, Iterator last, T init, BinaryOp binop, UnaryOp unaryop)
{
return std::inner_product(
first, last, first, init, binop, [&](auto&& x, auto&&) { return unaryop(x); });
}
/// Similiar to std::partial_sum but a projection can be applied to the elements first
template <class Iterator, class OutputIterator, class BinaryOperation, class UnaryOp>
OutputIterator transform_partial_sum(
Iterator first, Iterator last, OutputIterator d_first, BinaryOperation binop, UnaryOp unaryop)
{
if(first == last)
return d_first;
auto acc = unaryop(*first);
*d_first = acc;
while(++first != last)
{
acc = binop(std::move(acc), unaryop(*first));
*++d_first = acc;
}
return ++d_first;
}
template <class Iterator, class Output, class Predicate>
void group_by(Iterator start, Iterator last, Output out, Predicate pred)
{
while(start != last)
{
auto it = std::partition(start, last, [&](auto&& x) { return pred(x, *start); });
out(start, it);
start = it;
}
}
template <class Iterator, class Output, class Predicate>
void group_unique(Iterator start, Iterator last, Output out, Predicate pred)
{
while(start != last)
{
auto it = std::find_if(start, last, [&](auto&& x) { return not pred(*start, x); });
out(start, it);
start = it;
}
}
template <class Iterator, class Predicate, class Output>
void group_find(Iterator start, Iterator last, Predicate pred, Output out)
{
start = std::find_if(start, last, pred);
while(start != last)
{
auto it = std::find_if_not(start, last, pred);
out(start, it);
start = std::find_if(it, last, pred);
}
}
/// Similiar to std::remove_if but instead pass adjacent pairs to the predicate
template <class Iterator, class Predicate>
Iterator adjacent_remove_if(Iterator first, Iterator last, Predicate p)
{
first = std::adjacent_find(first, last, p);
if(first == last)
return first;
auto i = first;
while(std::next(++i) != last)
{
if(not p(*i, *std::next(i)))
{
*first = std::move(*i);
++first;
}
}
*first = std::move(*i);
++first;
return first;
}
/// Similiar to std::for_each but instead pass adjacent pairs to the function
template <class Iterator, class F>
Iterator adjacent_for_each(Iterator first, Iterator last, F f)
{
if(first == last)
return last;
Iterator next = first;
++next;
for(; next != last; ++next, ++first)
f(*first, *next);
return last;
}
template <class Iterator1, class Iterator2>
std::ptrdiff_t
levenshtein_distance(Iterator1 first1, Iterator1 last1, Iterator2 first2, Iterator2 last2)
{
if(first1 == last1)
return std::distance(first2, last2);
if(first2 == last2)
return std::distance(first1, last1);
if(*first1 == *first2)
return levenshtein_distance(std::next(first1), last1, std::next(first2), last2);
auto x1 = levenshtein_distance(std::next(first1), last1, std::next(first2), last2);
auto x2 = levenshtein_distance(first1, last1, std::next(first2), last2);
auto x3 = levenshtein_distance(std::next(first1), last1, first2, last2);
return std::ptrdiff_t{1} + std::min({x1, x2, x3});
}
inline size_t levenshtein_distance(const std::string& s1, const std::string& s2)
{
const size_t l1 = s1.length();
const size_t l2 = s2.length();
if(l1 < l2)
levenshtein_distance(s2, s1);
std::vector<size_t> d(l2 + 1);
std::iota(d.begin(), d.end(), 0);
for(size_t i = 1; i <= l1; i++)
{
size_t prev_cost = d[0];
d[0] = i;
for(size_t j = 1; j <= l2; j++)
{
if(s1[i - 1] == s2[j - 1])
{
d[j] = prev_cost;
}
else
{
size_t cost_insert_or_delete = std::min(d[j - 1], d[j]);
size_t cost_substitute = prev_cost;
prev_cost = d[j];
d[j] = std::min(cost_substitute, cost_insert_or_delete) + 1;
}
}
}
return d[l2];
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif