mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 21:44:13 +03:00
191 lines
7.0 KiB
Python
191 lines
7.0 KiB
Python
import logging
|
|
|
|
import numpy as np
|
|
import onnxruntime as ort
|
|
from pydantic import Field
|
|
from typing_extensions import Literal
|
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
from frigate.detectors.detector_config import (
|
|
BaseDetectorConfig,
|
|
ModelTypeEnum,
|
|
)
|
|
from frigate.util.model import (
|
|
get_ort_providers,
|
|
post_process_dfine,
|
|
post_process_rfdetr,
|
|
post_process_yolo,
|
|
post_process_yolox,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DETECTOR_KEY = "onnx"
|
|
|
|
|
|
class CudaGraphRunner:
|
|
"""Encapsulates CUDA Graph capture and replay using ONNX Runtime IOBinding.
|
|
|
|
This runner assumes a single tensor input and binds all model outputs.
|
|
"""
|
|
|
|
def __init__(self, session: ort.InferenceSession, cuda_device_id: int):
|
|
self._session = session
|
|
self._cuda_device_id = cuda_device_id
|
|
self._captured = False
|
|
self._io_binding: ort.IOBinding | None = None
|
|
self._input_name: str | None = None
|
|
self._output_names: list[str] | None = None
|
|
self._input_ortvalue: ort.OrtValue | None = None
|
|
self._output_ortvalues: ort.OrtValue | None = None
|
|
|
|
def run(self, input_name: str, tensor_input: np.ndarray):
|
|
tensor_input = np.ascontiguousarray(tensor_input)
|
|
|
|
if not self._captured:
|
|
# Prepare IOBinding with CUDA buffers and let ORT allocate outputs on device
|
|
self._io_binding = self._session.io_binding()
|
|
self._input_name = input_name
|
|
self._output_names = [o.name for o in self._session.get_outputs()]
|
|
|
|
self._input_ortvalue = ort.OrtValue.ortvalue_from_numpy(
|
|
tensor_input, "cuda", self._cuda_device_id
|
|
)
|
|
self._io_binding.bind_ortvalue_input(self._input_name, self._input_ortvalue)
|
|
|
|
for name in self._output_names:
|
|
# Bind outputs to CUDA and allow ORT to allocate appropriately
|
|
self._io_binding.bind_output(name, "cuda", self._cuda_device_id)
|
|
|
|
# First IOBinding run to allocate, execute, and capture CUDA Graph
|
|
ro = ort.RunOptions()
|
|
self._session.run_with_iobinding(self._io_binding, ro)
|
|
self._captured = True
|
|
return self._io_binding.copy_outputs_to_cpu()
|
|
|
|
# Replay using updated input, copy results to CPU
|
|
self._input_ortvalue.update_inplace(tensor_input)
|
|
ro = ort.RunOptions()
|
|
self._session.run_with_iobinding(self._io_binding, ro)
|
|
return self._io_binding.copy_outputs_to_cpu()
|
|
|
|
|
|
class ONNXDetectorConfig(BaseDetectorConfig):
|
|
type: Literal[DETECTOR_KEY]
|
|
device: str = Field(default="AUTO", title="Device Type")
|
|
|
|
|
|
class ONNXDetector(DetectionApi):
|
|
type_key = DETECTOR_KEY
|
|
|
|
def __init__(self, detector_config: ONNXDetectorConfig):
|
|
super().__init__(detector_config)
|
|
|
|
path = detector_config.model.path
|
|
logger.info(f"ONNX: loading {detector_config.model.path}")
|
|
|
|
providers, options = get_ort_providers(
|
|
detector_config.device == "CPU", detector_config.device
|
|
)
|
|
|
|
# Enable CUDA Graphs only for supported models when using CUDA EP
|
|
if "CUDAExecutionProvider" in providers:
|
|
cuda_idx = providers.index("CUDAExecutionProvider")
|
|
# mutate only this call's provider options
|
|
options[cuda_idx] = {
|
|
**options[cuda_idx],
|
|
"enable_cuda_graph": True,
|
|
}
|
|
|
|
self.model = ort.InferenceSession(
|
|
path, providers=providers, provider_options=options
|
|
)
|
|
|
|
self.onnx_model_type = detector_config.model.model_type
|
|
self.onnx_model_px = detector_config.model.input_pixel_format
|
|
self.onnx_model_shape = detector_config.model.input_tensor
|
|
path = detector_config.model.path
|
|
|
|
if self.onnx_model_type == ModelTypeEnum.yolox:
|
|
self.calculate_grids_strides()
|
|
|
|
self._cuda_device_id = 0
|
|
self._cg_runner: CudaGraphRunner | None = None
|
|
|
|
try:
|
|
if "CUDAExecutionProvider" in providers:
|
|
cuda_idx = providers.index("CUDAExecutionProvider")
|
|
self._cuda_device_id = options[cuda_idx].get("device_id", 0)
|
|
|
|
if options[cuda_idx].get("enable_cuda_graph"):
|
|
self._cg_runner = CudaGraphRunner(self.model, self._cuda_device_id)
|
|
except Exception:
|
|
pass
|
|
|
|
logger.info(f"ONNX: {path} loaded")
|
|
|
|
def detect_raw(self, tensor_input: np.ndarray):
|
|
if self.onnx_model_type == ModelTypeEnum.dfine:
|
|
tensor_output = self.model.run(
|
|
None,
|
|
{
|
|
"images": tensor_input,
|
|
"orig_target_sizes": np.array(
|
|
[[self.height, self.width]], dtype=np.int64
|
|
),
|
|
},
|
|
)
|
|
return post_process_dfine(tensor_output, self.width, self.height)
|
|
|
|
model_input_name = self.model.get_inputs()[0].name
|
|
|
|
if self._cg_runner is not None:
|
|
try:
|
|
# Run using CUDA graphs if available
|
|
tensor_output = self._cg_runner.run(model_input_name, tensor_input)
|
|
except Exception as e:
|
|
logger.warning(f"CUDA Graphs failed, falling back to regular run: {e}")
|
|
self._cg_runner = None
|
|
tensor_output = self.model.run(None, {model_input_name: tensor_input})
|
|
else:
|
|
# Use regular run if CUDA graphs are not available
|
|
tensor_output = self.model.run(None, {model_input_name: tensor_input})
|
|
|
|
if self.onnx_model_type == ModelTypeEnum.rfdetr:
|
|
return post_process_rfdetr(tensor_output)
|
|
elif self.onnx_model_type == ModelTypeEnum.yolonas:
|
|
predictions = tensor_output[0]
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
for i, prediction in enumerate(predictions):
|
|
if i == 20:
|
|
break
|
|
(_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
|
|
# when running in GPU mode, empty predictions in the output have class_id of -1
|
|
if class_id < 0:
|
|
break
|
|
detections[i] = [
|
|
class_id,
|
|
confidence,
|
|
y_min / self.height,
|
|
x_min / self.width,
|
|
y_max / self.height,
|
|
x_max / self.width,
|
|
]
|
|
return detections
|
|
elif self.onnx_model_type == ModelTypeEnum.yologeneric:
|
|
return post_process_yolo(tensor_output, self.width, self.height)
|
|
elif self.onnx_model_type == ModelTypeEnum.yolox:
|
|
return post_process_yolox(
|
|
tensor_output[0],
|
|
self.width,
|
|
self.height,
|
|
self.grids,
|
|
self.expanded_strides,
|
|
)
|
|
else:
|
|
raise Exception(
|
|
f"{self.onnx_model_type} is currently not supported for onnx. See the docs for more info on supported models."
|
|
)
|