frigate/frigate/detectors/plugins/edgetpu_tfl.py
2023-01-07 01:02:35 -05:00

97 lines
3.3 KiB
Python

import logging
import numpy as np
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from typing import Literal
from pydantic import Extra, Field
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
logger = logging.getLogger(__name__)
DETECTOR_KEY = "edgetpu"
class EdgeTpuDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
device: str = Field(default=None, title="Device Type")
class EdgeTpuTfl(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, detector_config: EdgeTpuDetectorConfig):
self.is_audio = detector_config.model.type == "audio"
device_config = {"device": "usb"}
if detector_config.device is not None:
device_config = {"device": detector_config.device}
edge_tpu_delegate = None
try:
logger.info(f"Attempting to load TPU as {device_config['device']}")
edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
logger.info("TPU found")
default_model = (
"/edgetpu_model.tflite"
if not self.is_audio
else "/edgetpu_audio_model.tflite"
)
self.interpreter = tflite.Interpreter(
model_path=detector_config.model.path or default_model,
experimental_delegates=[edge_tpu_delegate],
)
except ValueError:
logger.error(
"No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors."
)
raise
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
def detect_raw(self, tensor_input):
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
self.interpreter.invoke()
detections = np.zeros((20, 6), np.float32)
if self.is_audio:
res = self.interpreter.get_tensor(self.tensor_output_details[0]["index"])[0]
non_zero_indices = res > 0
class_ids = np.argpartition(-res, 20)[:20]
class_ids = class_ids[np.argsort(-res[class_ids])]
class_ids = class_ids[non_zero_indices[class_ids]]
scores = res[class_ids]
boxes = np.full((scores.shape[0], 4), -1, np.float32)
count = len(scores)
else:
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
class_ids = self.interpreter.tensor(
self.tensor_output_details[1]["index"]
)()[0]
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[
0
]
count = int(
self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
)
for i in range(count):
if scores[i] < 0.4 or i == 20:
break
detections[i] = [
class_ids[i],
float(scores[i]),
boxes[i][0],
boxes[i][1],
boxes[i][2],
boxes[i][3],
]
return detections