frigate/frigate/objects.py
2020-03-03 20:26:53 -06:00

429 lines
19 KiB
Python

import time
import datetime
import threading
import cv2
# import prctl
import itertools
import copy
import numpy as np
import multiprocessing as mp
from collections import defaultdict
from scipy.spatial import distance as dist
from frigate.util import draw_box_with_label, LABELS, calculate_region
# class ObjectCleaner(threading.Thread):
# def __init__(self, camera):
# threading.Thread.__init__(self)
# self.camera = camera
# def run(self):
# prctl.set_name("ObjectCleaner")
# while True:
# # wait a bit before checking for expired frames
# time.sleep(0.2)
# for frame_time in list(self.camera.detected_objects.keys()).copy():
# if not frame_time in self.camera.frame_cache:
# del self.camera.detected_objects[frame_time]
# objects_deregistered = False
# with self.camera.object_tracker.tracked_objects_lock:
# now = datetime.datetime.now().timestamp()
# for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
# # if the object is more than 10 seconds old
# # and not in the most recent frame, deregister
# if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
# self.camera.object_tracker.deregister(id)
# objects_deregistered = True
# if objects_deregistered:
# with self.camera.objects_tracked:
# self.camera.objects_tracked.notify_all()
# class DetectedObjectsProcessor(threading.Thread):
# def __init__(self, camera):
# threading.Thread.__init__(self)
# self.camera = camera
# def run(self):
# prctl.set_name(self.__class__.__name__)
# while True:
# frame = self.camera.detected_objects_queue.get()
# objects = frame['detected_objects']
# for raw_obj in objects:
# name = str(LABELS[raw_obj.label_id])
# if not name in self.camera.objects_to_track:
# continue
# obj = {
# 'name': name,
# 'score': float(raw_obj.score),
# 'box': {
# 'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
# 'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
# 'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
# 'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
# },
# 'region': {
# 'xmin': frame['x_offset'],
# 'ymin': frame['y_offset'],
# 'xmax': frame['x_offset']+frame['size'],
# 'ymax': frame['y_offset']+frame['size']
# },
# 'frame_time': frame['frame_time'],
# 'region_id': frame['region_id']
# }
# # if the object is within 5 pixels of the region border, and the region is not on the edge
# # consider the object to be clipped
# obj['clipped'] = False
# if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
# (obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
# (self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
# (self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
# obj['clipped'] = True
# # Compute the area
# # TODO: +1 right?
# obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
# self.camera.detected_objects[frame['frame_time']].append(obj)
# # TODO: use in_process and processed counts instead to avoid lock
# with self.camera.regions_in_process_lock:
# if frame['frame_time'] in self.camera.regions_in_process:
# self.camera.regions_in_process[frame['frame_time']] -= 1
# # print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
# if self.camera.regions_in_process[frame['frame_time']] == 0:
# del self.camera.regions_in_process[frame['frame_time']]
# # print(f"{frame['frame_time']} no remaining regions")
# self.camera.finished_frame_queue.put(frame['frame_time'])
# else:
# self.camera.finished_frame_queue.put(frame['frame_time'])
# # Thread that checks finished frames for clipped objects and sends back
# # for processing if needed
# # TODO: evaluate whether or not i really need separate threads/queues for each step
# # given that only 1 thread will really be able to run at a time. you need a
# # separate process to actually do things in parallel for when you are CPU bound.
# # threads are good when you are waiting and could be processing while you wait
# class RegionRefiner(threading.Thread):
# def __init__(self, camera):
# threading.Thread.__init__(self)
# self.camera = camera
# def run(self):
# prctl.set_name(self.__class__.__name__)
# while True:
# frame_time = self.camera.finished_frame_queue.get()
# detected_objects = self.camera.detected_objects[frame_time].copy()
# # print(f"{frame_time} finished")
# # group by name
# detected_object_groups = defaultdict(lambda: [])
# for obj in detected_objects:
# detected_object_groups[obj['name']].append(obj)
# look_again = False
# selected_objects = []
# for group in detected_object_groups.values():
# # apply non-maxima suppression to suppress weak, overlapping bounding boxes
# boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
# for o in group]
# confidences = [o['score'] for o in group]
# idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# for index in idxs:
# obj = group[index[0]]
# selected_objects.append(obj)
# if obj['clipped']:
# box = obj['box']
# # calculate a new region that will hopefully get the entire object
# (size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
# box['xmin'], box['ymin'],
# box['xmax'], box['ymax'])
# # print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
# with self.camera.regions_in_process_lock:
# if not frame_time in self.camera.regions_in_process:
# self.camera.regions_in_process[frame_time] = 1
# else:
# self.camera.regions_in_process[frame_time] += 1
# # add it to the queue
# self.camera.resize_queue.put({
# 'camera_name': self.camera.name,
# 'frame_time': frame_time,
# 'region_id': -1,
# 'size': size,
# 'x_offset': x_offset,
# 'y_offset': y_offset
# })
# self.camera.dynamic_region_fps.update()
# look_again = True
# # if we are looking again, then this frame is not ready for processing
# if look_again:
# # remove the clipped objects
# self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
# continue
# # filter objects based on camera settings
# selected_objects = [o for o in selected_objects if not self.filtered(o)]
# self.camera.detected_objects[frame_time] = selected_objects
# # print(f"{frame_time} is actually finished")
# # keep adding frames to the refined queue as long as they are finished
# with self.camera.regions_in_process_lock:
# while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
# self.camera.last_processed_frame = self.camera.frame_queue.get()
# self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
# def filtered(self, obj):
# object_name = obj['name']
# if object_name in self.camera.object_filters:
# obj_settings = self.camera.object_filters[object_name]
# # if the min area is larger than the
# # detected object, don't add it to detected objects
# if obj_settings.get('min_area',-1) > obj['area']:
# return True
# # if the detected object is larger than the
# # max area, don't add it to detected objects
# if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
# return True
# # if the score is lower than the threshold, skip
# if obj_settings.get('threshold', 0) > obj['score']:
# return True
# # compute the coordinates of the object and make sure
# # the location isnt outside the bounds of the image (can happen from rounding)
# y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
# x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
# # if the object is in a masked location, don't add it to detected objects
# if self.camera.mask[y_location][x_location] == [0]:
# return True
# return False
# def has_overlap(self, new_obj, obj, overlap=.7):
# # compute intersection rectangle with existing object and new objects region
# existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
# # compute intersection rectangle with new object and existing objects region
# new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
# # compute iou for the two intersection rectangles that were just computed
# iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
# # if intersection is greater than overlap
# if iou > overlap:
# return True
# else:
# return False
# def find_group(self, new_obj, groups):
# for index, group in enumerate(groups):
# for obj in group:
# if self.has_overlap(new_obj, obj):
# return index
# return None
class ObjectTracker():
def __init__(self, max_disappeared):
self.tracked_objects = {}
self.disappeared = {}
self.max_disappeared = max_disappeared
def register(self, index, obj):
id = f"{obj['frame_time']}-{index}"
obj['id'] = id
obj['top_score'] = obj['score']
self.add_history(obj)
self.tracked_objects[id] = obj
self.disappeared[id] = 0
def deregister(self, id):
del self.tracked_objects[id]
del self.disappeared[id]
def update(self, id, new_obj):
self.disappeared[id] = 0
self.tracked_objects[id].update(new_obj)
self.add_history(self.tracked_objects[id])
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
def add_history(self, obj):
entry = {
'score': obj['score'],
'box': obj['box'],
'region': obj['region'],
'centroid': obj['centroid'],
'frame_time': obj['frame_time']
}
if 'history' in obj:
obj['history'].append(entry)
else:
obj['history'] = [entry]
def match_and_update(self, frame_time, new_objects):
if len(new_objects) == 0:
for id in list(self.tracked_objects.keys()):
if self.disappeared[id] >= self.max_disappeared:
self.deregister(id)
else:
self.disappeared[id] += 1
return
# group by name
new_object_groups = defaultdict(lambda: [])
for obj in new_objects:
new_object_groups[obj[0]].append({
'label': obj[0],
'score': obj[1],
'box': obj[2],
'area': obj[3],
'region': obj[4],
'frame_time': frame_time
})
# track objects for each label type
for label, group in new_object_groups.items():
current_objects = [o for o in self.tracked_objects.values() if o['label'] == label]
current_ids = [o['id'] for o in current_objects]
current_centroids = np.array([o['centroid'] for o in current_objects])
# compute centroids of new objects
for obj in group:
centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0)
centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0)
obj['centroid'] = (centroid_x, centroid_y)
if len(current_objects) == 0:
for index, obj in enumerate(group):
self.register(index, obj)
return
new_centroids = np.array([o['centroid'] for o in group])
# compute the distance between each pair of tracked
# centroids and new centroids, respectively -- our
# goal will be to match each new centroid to an existing
# object centroid
D = dist.cdist(current_centroids, new_centroids)
# in order to perform this matching we must (1) find the
# smallest value in each row and then (2) sort the row
# indexes based on their minimum values so that the row
# with the smallest value is at the *front* of the index
# list
rows = D.min(axis=1).argsort()
# next, we perform a similar process on the columns by
# finding the smallest value in each column and then
# sorting using the previously computed row index list
cols = D.argmin(axis=1)[rows]
# in order to determine if we need to update, register,
# or deregister an object we need to keep track of which
# of the rows and column indexes we have already examined
usedRows = set()
usedCols = set()
# loop over the combination of the (row, column) index
# tuples
for (row, col) in zip(rows, cols):
# if we have already examined either the row or
# column value before, ignore it
if row in usedRows or col in usedCols:
continue
# otherwise, grab the object ID for the current row,
# set its new centroid, and reset the disappeared
# counter
objectID = current_ids[row]
self.update(objectID, group[col])
# indicate that we have examined each of the row and
# column indexes, respectively
usedRows.add(row)
usedCols.add(col)
# compute the column index we have NOT yet examined
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# in the event that the number of object centroids is
# equal or greater than the number of input centroids
# we need to check and see if some of these objects have
# potentially disappeared
if D.shape[0] >= D.shape[1]:
for row in unusedRows:
id = current_ids[row]
if self.disappeared[id] >= self.max_disappeared:
self.deregister(id)
else:
self.disappeared[id] += 1
# if the number of input centroids is greater
# than the number of existing object centroids we need to
# register each new input centroid as a trackable object
else:
for col in unusedCols:
self.register(col, group[col])
# Maintains the frame and object with the highest score
# class BestFrames(threading.Thread):
# def __init__(self, camera):
# threading.Thread.__init__(self)
# self.camera = camera
# self.best_objects = {}
# self.best_frames = {}
# def run(self):
# prctl.set_name(self.__class__.__name__)
# while True:
# # wait until objects have been tracked
# with self.camera.objects_tracked:
# self.camera.objects_tracked.wait()
# # make a copy of tracked objects
# tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
# for obj in tracked_objects:
# if obj['name'] in self.best_objects:
# now = datetime.datetime.now().timestamp()
# # if the object is a higher score than the current best score
# # or the current object is more than 1 minute old, use the new object
# if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
# self.best_objects[obj['name']] = copy.deepcopy(obj)
# else:
# self.best_objects[obj['name']] = copy.deepcopy(obj)
# for name, obj in self.best_objects.items():
# if obj['frame_time'] in self.camera.frame_cache:
# best_frame = self.camera.frame_cache[obj['frame_time']]
# draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
# obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']))
# # print a timestamp
# if self.camera.snapshot_config['show_timestamp']:
# time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
# cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# self.best_frames[name] = best_frame