frigate/frigate/video.py
Nicolas Mowen 97b29d177a
Some checks failed
CI / AMD64 Build (push) Has been cancelled
CI / ARM Build (push) Has been cancelled
CI / Jetson Jetpack 6 (push) Has been cancelled
CI / AMD64 Extra Build (push) Has been cancelled
CI / ARM Extra Build (push) Has been cancelled
CI / Synaptics Build (push) Has been cancelled
CI / Assemble and push default build (push) Has been cancelled
Miscellaneous Fixes (#21072)
* Implement renaming in model editing dialog

* add transcription faq

* remove incorrect constraint for viewer as username

should be able to change anyone's role other than admin

* Don't save redundant state changes

* prevent crash when a camera doesn't support onvif imaging service required for focus support

* Fine tune behavior

* Stop redundant go2rtc stream metadata requests and defer audio information to allow bandwidth for image requests

* Improve cleanup logic for capture process

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
2025-11-30 06:54:42 -06:00

1092 lines
39 KiB
Python
Executable File

import logging
import queue
import subprocess as sp
import threading
import time
from datetime import datetime, timedelta, timezone
from multiprocessing import Queue, Value
from multiprocessing.synchronize import Event as MpEvent
from typing import Any
import cv2
from frigate.camera import CameraMetrics, PTZMetrics
from frigate.comms.inter_process import InterProcessRequestor
from frigate.comms.recordings_updater import (
RecordingsDataSubscriber,
RecordingsDataTypeEnum,
)
from frigate.config import CameraConfig, DetectConfig, LoggerConfig, ModelConfig
from frigate.config.camera.camera import CameraTypeEnum
from frigate.config.camera.updater import (
CameraConfigUpdateEnum,
CameraConfigUpdateSubscriber,
)
from frigate.const import (
PROCESS_PRIORITY_HIGH,
REQUEST_REGION_GRID,
)
from frigate.log import LogPipe
from frigate.motion import MotionDetector
from frigate.motion.improved_motion import ImprovedMotionDetector
from frigate.object_detection.base import RemoteObjectDetector
from frigate.ptz.autotrack import ptz_moving_at_frame_time
from frigate.track import ObjectTracker
from frigate.track.norfair_tracker import NorfairTracker
from frigate.track.tracked_object import TrackedObjectAttribute
from frigate.util.builtin import EventsPerSecond
from frigate.util.image import (
FrameManager,
SharedMemoryFrameManager,
draw_box_with_label,
)
from frigate.util.object import (
create_tensor_input,
get_cluster_candidates,
get_cluster_region,
get_cluster_region_from_grid,
get_min_region_size,
get_startup_regions,
inside_any,
intersects_any,
is_object_filtered,
reduce_detections,
)
from frigate.util.process import FrigateProcess
from frigate.util.time import get_tomorrow_at_time
logger = logging.getLogger(__name__)
def stop_ffmpeg(ffmpeg_process: sp.Popen[Any], logger: logging.Logger):
logger.info("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
logger.info("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
logger.info("FFmpeg didn't exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
def start_or_restart_ffmpeg(
ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None
) -> sp.Popen[Any]:
if ffmpeg_process is not None:
stop_ffmpeg(ffmpeg_process, logger)
if frame_size is None:
process = sp.Popen(
ffmpeg_cmd,
stdout=sp.DEVNULL,
stderr=logpipe,
stdin=sp.DEVNULL,
start_new_session=True,
)
else:
process = sp.Popen(
ffmpeg_cmd,
stdout=sp.PIPE,
stderr=logpipe,
stdin=sp.DEVNULL,
bufsize=frame_size * 10,
start_new_session=True,
)
return process
def capture_frames(
ffmpeg_process: sp.Popen[Any],
config: CameraConfig,
shm_frame_count: int,
frame_index: int,
frame_shape: tuple[int, int],
frame_manager: FrameManager,
frame_queue,
fps: Value,
skipped_fps: Value,
current_frame: Value,
stop_event: MpEvent,
) -> None:
frame_size = frame_shape[0] * frame_shape[1]
frame_rate = EventsPerSecond()
frame_rate.start()
skipped_eps = EventsPerSecond()
skipped_eps.start()
config_subscriber = CameraConfigUpdateSubscriber(
None, {config.name: config}, [CameraConfigUpdateEnum.enabled]
)
def get_enabled_state():
"""Fetch the latest enabled state from ZMQ."""
config_subscriber.check_for_updates()
return config.enabled
try:
while not stop_event.is_set():
if not get_enabled_state():
logger.debug(f"Stopping capture thread for disabled {config.name}")
break
fps.value = frame_rate.eps()
skipped_fps.value = skipped_eps.eps()
current_frame.value = datetime.now().timestamp()
frame_name = f"{config.name}_frame{frame_index}"
frame_buffer = frame_manager.write(frame_name)
try:
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
except Exception:
# shutdown has been initiated
if stop_event.is_set():
break
logger.error(
f"{config.name}: Unable to read frames from ffmpeg process."
)
if ffmpeg_process.poll() is not None:
logger.error(
f"{config.name}: ffmpeg process is not running. exiting capture thread..."
)
break
continue
frame_rate.update()
# don't lock the queue to check, just try since it should rarely be full
try:
# add to the queue
frame_queue.put((frame_name, current_frame.value), False)
frame_manager.close(frame_name)
except queue.Full:
# if the queue is full, skip this frame
skipped_eps.update()
frame_index = 0 if frame_index == shm_frame_count - 1 else frame_index + 1
finally:
config_subscriber.stop()
class CameraWatchdog(threading.Thread):
def __init__(
self,
config: CameraConfig,
shm_frame_count: int,
frame_queue: Queue,
camera_fps,
skipped_fps,
ffmpeg_pid,
stop_event,
):
threading.Thread.__init__(self)
self.logger = logging.getLogger(f"watchdog.{config.name}")
self.config = config
self.shm_frame_count = shm_frame_count
self.capture_thread = None
self.ffmpeg_detect_process = None
self.logpipe = LogPipe(f"ffmpeg.{self.config.name}.detect")
self.ffmpeg_other_processes: list[dict[str, Any]] = []
self.camera_fps = camera_fps
self.skipped_fps = skipped_fps
self.ffmpeg_pid = ffmpeg_pid
self.frame_queue = frame_queue
self.frame_shape = self.config.frame_shape_yuv
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
self.fps_overflow_count = 0
self.frame_index = 0
self.stop_event = stop_event
self.sleeptime = self.config.ffmpeg.retry_interval
self.config_subscriber = CameraConfigUpdateSubscriber(
None,
{config.name: config},
[CameraConfigUpdateEnum.enabled, CameraConfigUpdateEnum.record],
)
self.requestor = InterProcessRequestor()
self.was_enabled = self.config.enabled
self.segment_subscriber = RecordingsDataSubscriber(RecordingsDataTypeEnum.all)
self.latest_valid_segment_time: float = 0
self.latest_invalid_segment_time: float = 0
self.latest_cache_segment_time: float = 0
def _update_enabled_state(self) -> bool:
"""Fetch the latest config and update enabled state."""
self.config_subscriber.check_for_updates()
return self.config.enabled
def reset_capture_thread(
self, terminate: bool = True, drain_output: bool = True
) -> None:
if terminate:
self.ffmpeg_detect_process.terminate()
try:
self.logger.info("Waiting for ffmpeg to exit gracefully...")
if drain_output:
self.ffmpeg_detect_process.communicate(timeout=30)
else:
self.ffmpeg_detect_process.wait(timeout=30)
except sp.TimeoutExpired:
self.logger.info("FFmpeg did not exit. Force killing...")
self.ffmpeg_detect_process.kill()
if drain_output:
self.ffmpeg_detect_process.communicate()
else:
self.ffmpeg_detect_process.wait()
# Wait for old capture thread to fully exit before starting a new one
if self.capture_thread is not None and self.capture_thread.is_alive():
self.logger.info("Waiting for capture thread to exit...")
self.capture_thread.join(timeout=5)
if self.capture_thread.is_alive():
self.logger.warning(
f"Capture thread for {self.config.name} did not exit in time"
)
self.logger.error(
"The following ffmpeg logs include the last 100 lines prior to exit."
)
self.logpipe.dump()
self.logger.info("Restarting ffmpeg...")
self.start_ffmpeg_detect()
def run(self) -> None:
if self._update_enabled_state():
self.start_all_ffmpeg()
time.sleep(self.sleeptime)
while not self.stop_event.wait(self.sleeptime):
enabled = self._update_enabled_state()
if enabled != self.was_enabled:
if enabled:
self.logger.debug(f"Enabling camera {self.config.name}")
self.start_all_ffmpeg()
# reset all timestamps
self.latest_valid_segment_time = 0
self.latest_invalid_segment_time = 0
self.latest_cache_segment_time = 0
else:
self.logger.debug(f"Disabling camera {self.config.name}")
self.stop_all_ffmpeg()
# update camera status
self.requestor.send_data(
f"{self.config.name}/status/detect", "disabled"
)
self.requestor.send_data(
f"{self.config.name}/status/record", "disabled"
)
self.was_enabled = enabled
continue
if not enabled:
continue
while True:
update = self.segment_subscriber.check_for_update(timeout=0)
if update == (None, None):
break
raw_topic, payload = update
if raw_topic and payload:
topic = str(raw_topic)
camera, segment_time, _ = payload
if camera != self.config.name:
continue
if topic.endswith(RecordingsDataTypeEnum.valid.value):
self.logger.debug(
f"Latest valid recording segment time on {camera}: {segment_time}"
)
self.latest_valid_segment_time = segment_time
elif topic.endswith(RecordingsDataTypeEnum.invalid.value):
self.logger.warning(
f"Invalid recording segment detected for {camera} at {segment_time}"
)
self.latest_invalid_segment_time = segment_time
elif topic.endswith(RecordingsDataTypeEnum.latest.value):
if segment_time is not None:
self.latest_cache_segment_time = segment_time
else:
self.latest_cache_segment_time = 0
now = datetime.now().timestamp()
if not self.capture_thread.is_alive():
self.requestor.send_data(f"{self.config.name}/status/detect", "offline")
self.camera_fps.value = 0
self.logger.error(
f"Ffmpeg process crashed unexpectedly for {self.config.name}."
)
self.reset_capture_thread(terminate=False)
elif self.camera_fps.value >= (self.config.detect.fps + 10):
self.fps_overflow_count += 1
if self.fps_overflow_count == 3:
self.requestor.send_data(
f"{self.config.name}/status/detect", "offline"
)
self.fps_overflow_count = 0
self.camera_fps.value = 0
self.logger.info(
f"{self.config.name} exceeded fps limit. Exiting ffmpeg..."
)
self.reset_capture_thread(drain_output=False)
elif now - self.capture_thread.current_frame.value > 20:
self.requestor.send_data(f"{self.config.name}/status/detect", "offline")
self.camera_fps.value = 0
self.logger.info(
f"No frames received from {self.config.name} in 20 seconds. Exiting ffmpeg..."
)
self.reset_capture_thread()
else:
# process is running normally
self.requestor.send_data(f"{self.config.name}/status/detect", "online")
self.fps_overflow_count = 0
for p in self.ffmpeg_other_processes:
poll = p["process"].poll()
if self.config.record.enabled and "record" in p["roles"]:
now_utc = datetime.now().astimezone(timezone.utc)
latest_cache_dt = (
datetime.fromtimestamp(
self.latest_cache_segment_time, tz=timezone.utc
)
if self.latest_cache_segment_time > 0
else now_utc - timedelta(seconds=1)
)
latest_valid_dt = (
datetime.fromtimestamp(
self.latest_valid_segment_time, tz=timezone.utc
)
if self.latest_valid_segment_time > 0
else now_utc - timedelta(seconds=1)
)
latest_invalid_dt = (
datetime.fromtimestamp(
self.latest_invalid_segment_time, tz=timezone.utc
)
if self.latest_invalid_segment_time > 0
else now_utc - timedelta(seconds=1)
)
# ensure segments are still being created and that they have valid video data
cache_stale = now_utc > (latest_cache_dt + timedelta(seconds=120))
valid_stale = now_utc > (latest_valid_dt + timedelta(seconds=120))
invalid_stale_condition = (
self.latest_invalid_segment_time > 0
and now_utc > (latest_invalid_dt + timedelta(seconds=120))
and self.latest_valid_segment_time
<= self.latest_invalid_segment_time
)
invalid_stale = invalid_stale_condition
if cache_stale or valid_stale or invalid_stale:
if cache_stale:
reason = "No new recording segments were created"
elif valid_stale:
reason = "No new valid recording segments were created"
else: # invalid_stale
reason = (
"No valid segments created since last invalid segment"
)
self.logger.error(
f"{reason} for {self.config.name} in the last 120s. Restarting the ffmpeg record process..."
)
p["process"] = start_or_restart_ffmpeg(
p["cmd"],
self.logger,
p["logpipe"],
ffmpeg_process=p["process"],
)
for role in p["roles"]:
self.requestor.send_data(
f"{self.config.name}/status/{role}", "offline"
)
continue
else:
self.requestor.send_data(
f"{self.config.name}/status/record", "online"
)
p["latest_segment_time"] = self.latest_cache_segment_time
if poll is None:
continue
for role in p["roles"]:
self.requestor.send_data(
f"{self.config.name}/status/{role}", "offline"
)
p["logpipe"].dump()
p["process"] = start_or_restart_ffmpeg(
p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"]
)
self.stop_all_ffmpeg()
self.logpipe.close()
self.config_subscriber.stop()
self.segment_subscriber.stop()
def start_ffmpeg_detect(self):
ffmpeg_cmd = [
c["cmd"] for c in self.config.ffmpeg_cmds if "detect" in c["roles"]
][0]
self.ffmpeg_detect_process = start_or_restart_ffmpeg(
ffmpeg_cmd, self.logger, self.logpipe, self.frame_size
)
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
self.capture_thread = CameraCaptureRunner(
self.config,
self.shm_frame_count,
self.frame_index,
self.ffmpeg_detect_process,
self.frame_shape,
self.frame_queue,
self.camera_fps,
self.skipped_fps,
self.stop_event,
)
self.capture_thread.start()
def start_all_ffmpeg(self):
"""Start all ffmpeg processes (detection and others)."""
logger.debug(f"Starting all ffmpeg processes for {self.config.name}")
self.start_ffmpeg_detect()
for c in self.config.ffmpeg_cmds:
if "detect" in c["roles"]:
continue
logpipe = LogPipe(
f"ffmpeg.{self.config.name}.{'_'.join(sorted(c['roles']))}"
)
self.ffmpeg_other_processes.append(
{
"cmd": c["cmd"],
"roles": c["roles"],
"logpipe": logpipe,
"process": start_or_restart_ffmpeg(c["cmd"], self.logger, logpipe),
}
)
def stop_all_ffmpeg(self):
"""Stop all ffmpeg processes (detection and others)."""
logger.debug(f"Stopping all ffmpeg processes for {self.config.name}")
if self.capture_thread is not None and self.capture_thread.is_alive():
self.capture_thread.join(timeout=5)
if self.capture_thread.is_alive():
self.logger.warning(
f"Capture thread for {self.config.name} did not stop gracefully."
)
if self.ffmpeg_detect_process is not None:
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
self.ffmpeg_detect_process = None
for p in self.ffmpeg_other_processes[:]:
if p["process"] is not None:
stop_ffmpeg(p["process"], self.logger)
p["logpipe"].close()
self.ffmpeg_other_processes.clear()
class CameraCaptureRunner(threading.Thread):
def __init__(
self,
config: CameraConfig,
shm_frame_count: int,
frame_index: int,
ffmpeg_process,
frame_shape: tuple[int, int],
frame_queue: Queue,
fps: Value,
skipped_fps: Value,
stop_event: MpEvent,
):
threading.Thread.__init__(self)
self.name = f"capture:{config.name}"
self.config = config
self.shm_frame_count = shm_frame_count
self.frame_index = frame_index
self.frame_shape = frame_shape
self.frame_queue = frame_queue
self.fps = fps
self.stop_event = stop_event
self.skipped_fps = skipped_fps
self.frame_manager = SharedMemoryFrameManager()
self.ffmpeg_process = ffmpeg_process
self.current_frame = Value("d", 0.0)
self.last_frame = 0
def run(self):
capture_frames(
self.ffmpeg_process,
self.config,
self.shm_frame_count,
self.frame_index,
self.frame_shape,
self.frame_manager,
self.frame_queue,
self.fps,
self.skipped_fps,
self.current_frame,
self.stop_event,
)
class CameraCapture(FrigateProcess):
def __init__(
self,
config: CameraConfig,
shm_frame_count: int,
camera_metrics: CameraMetrics,
stop_event: MpEvent,
log_config: LoggerConfig | None = None,
) -> None:
super().__init__(
stop_event,
PROCESS_PRIORITY_HIGH,
name=f"frigate.capture:{config.name}",
daemon=True,
)
self.config = config
self.shm_frame_count = shm_frame_count
self.camera_metrics = camera_metrics
self.log_config = log_config
def run(self) -> None:
self.pre_run_setup(self.log_config)
camera_watchdog = CameraWatchdog(
self.config,
self.shm_frame_count,
self.camera_metrics.frame_queue,
self.camera_metrics.camera_fps,
self.camera_metrics.skipped_fps,
self.camera_metrics.ffmpeg_pid,
self.stop_event,
)
camera_watchdog.start()
camera_watchdog.join()
class CameraTracker(FrigateProcess):
def __init__(
self,
config: CameraConfig,
model_config: ModelConfig,
labelmap: dict[int, str],
detection_queue: Queue,
detected_objects_queue,
camera_metrics: CameraMetrics,
ptz_metrics: PTZMetrics,
region_grid: list[list[dict[str, Any]]],
stop_event: MpEvent,
log_config: LoggerConfig | None = None,
) -> None:
super().__init__(
stop_event,
PROCESS_PRIORITY_HIGH,
name=f"frigate.process:{config.name}",
daemon=True,
)
self.config = config
self.model_config = model_config
self.labelmap = labelmap
self.detection_queue = detection_queue
self.detected_objects_queue = detected_objects_queue
self.camera_metrics = camera_metrics
self.ptz_metrics = ptz_metrics
self.region_grid = region_grid
self.log_config = log_config
def run(self) -> None:
self.pre_run_setup(self.log_config)
frame_queue = self.camera_metrics.frame_queue
frame_shape = self.config.frame_shape
motion_detector = ImprovedMotionDetector(
frame_shape,
self.config.motion,
self.config.detect.fps,
name=self.config.name,
ptz_metrics=self.ptz_metrics,
)
object_detector = RemoteObjectDetector(
self.config.name,
self.labelmap,
self.detection_queue,
self.model_config,
self.stop_event,
)
object_tracker = NorfairTracker(self.config, self.ptz_metrics)
frame_manager = SharedMemoryFrameManager()
# create communication for region grid updates
requestor = InterProcessRequestor()
process_frames(
requestor,
frame_queue,
frame_shape,
self.model_config,
self.config,
frame_manager,
motion_detector,
object_detector,
object_tracker,
self.detected_objects_queue,
self.camera_metrics,
self.stop_event,
self.ptz_metrics,
self.region_grid,
)
# empty the frame queue
logger.info(f"{self.config.name}: emptying frame queue")
while not frame_queue.empty():
(frame_name, _) = frame_queue.get(False)
frame_manager.delete(frame_name)
logger.info(f"{self.config.name}: exiting subprocess")
def detect(
detect_config: DetectConfig,
object_detector,
frame,
model_config: ModelConfig,
region,
objects_to_track,
object_filters,
):
tensor_input = create_tensor_input(frame, model_config, region)
detections = []
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2] - region[0]
x_min = int(max(0, (box[1] * size) + region[0]))
y_min = int(max(0, (box[0] * size) + region[1]))
x_max = int(min(detect_config.width - 1, (box[3] * size) + region[0]))
y_max = int(min(detect_config.height - 1, (box[2] * size) + region[1]))
# ignore objects that were detected outside the frame
if (x_min >= detect_config.width - 1) or (y_min >= detect_config.height - 1):
continue
width = x_max - x_min
height = y_max - y_min
area = width * height
ratio = width / max(1, height)
det = (d[0], d[1], (x_min, y_min, x_max, y_max), area, ratio, region)
# apply object filters
if is_object_filtered(det, objects_to_track, object_filters):
continue
detections.append(det)
return detections
def process_frames(
requestor: InterProcessRequestor,
frame_queue: Queue,
frame_shape: tuple[int, int],
model_config: ModelConfig,
camera_config: CameraConfig,
frame_manager: FrameManager,
motion_detector: MotionDetector,
object_detector: RemoteObjectDetector,
object_tracker: ObjectTracker,
detected_objects_queue: Queue,
camera_metrics: CameraMetrics,
stop_event: MpEvent,
ptz_metrics: PTZMetrics,
region_grid: list[list[dict[str, Any]]],
exit_on_empty: bool = False,
):
next_region_update = get_tomorrow_at_time(2)
config_subscriber = CameraConfigUpdateSubscriber(
None,
{camera_config.name: camera_config},
[
CameraConfigUpdateEnum.detect,
CameraConfigUpdateEnum.enabled,
CameraConfigUpdateEnum.motion,
CameraConfigUpdateEnum.objects,
],
)
fps_tracker = EventsPerSecond()
fps_tracker.start()
startup_scan = True
stationary_frame_counter = 0
camera_enabled = True
region_min_size = get_min_region_size(model_config)
attributes_map = model_config.attributes_map
all_attributes = model_config.all_attributes
# remove license_plate from attributes if this camera is a dedicated LPR cam
if camera_config.type == CameraTypeEnum.lpr:
modified_attributes_map = model_config.attributes_map.copy()
if (
"car" in modified_attributes_map
and "license_plate" in modified_attributes_map["car"]
):
modified_attributes_map["car"] = [
attr
for attr in modified_attributes_map["car"]
if attr != "license_plate"
]
attributes_map = modified_attributes_map
all_attributes = [
attr for attr in model_config.all_attributes if attr != "license_plate"
]
while not stop_event.is_set():
updated_configs = config_subscriber.check_for_updates()
if "enabled" in updated_configs:
prev_enabled = camera_enabled
camera_enabled = camera_config.enabled
if "motion" in updated_configs:
motion_detector.update_mask()
if (
not camera_enabled
and prev_enabled != camera_enabled
and camera_metrics.frame_queue.empty()
):
logger.debug(
f"Camera {camera_config.name} disabled, clearing tracked objects"
)
prev_enabled = camera_enabled
# Clear norfair's dictionaries
object_tracker.tracked_objects.clear()
object_tracker.disappeared.clear()
object_tracker.stationary_box_history.clear()
object_tracker.positions.clear()
object_tracker.track_id_map.clear()
# Clear internal norfair states
for trackers_by_type in object_tracker.trackers.values():
for tracker in trackers_by_type.values():
tracker.tracked_objects = []
for tracker in object_tracker.default_tracker.values():
tracker.tracked_objects = []
if not camera_enabled:
time.sleep(0.1)
continue
if datetime.now().astimezone(timezone.utc) > next_region_update:
region_grid = requestor.send_data(REQUEST_REGION_GRID, camera_config.name)
next_region_update = get_tomorrow_at_time(2)
try:
if exit_on_empty:
frame_name, frame_time = frame_queue.get(False)
else:
frame_name, frame_time = frame_queue.get(True, 1)
except queue.Empty:
if exit_on_empty:
logger.info("Exiting track_objects...")
break
continue
camera_metrics.detection_frame.value = frame_time
ptz_metrics.frame_time.value = frame_time
frame = frame_manager.get(frame_name, (frame_shape[0] * 3 // 2, frame_shape[1]))
if frame is None:
logger.debug(
f"{camera_config.name}: frame {frame_time} is not in memory store."
)
continue
# look for motion if enabled
motion_boxes = motion_detector.detect(frame)
regions = []
consolidated_detections = []
# if detection is disabled
if not camera_config.detect.enabled:
object_tracker.match_and_update(frame_name, frame_time, [])
else:
# get stationary object ids
# check every Nth frame for stationary objects
# disappeared objects are not stationary
# also check for overlapping motion boxes
if stationary_frame_counter == camera_config.detect.stationary.interval:
stationary_frame_counter = 0
stationary_object_ids = []
else:
stationary_frame_counter += 1
stationary_object_ids = [
obj["id"]
for obj in object_tracker.tracked_objects.values()
# if it has exceeded the stationary threshold
if obj["motionless_count"]
>= camera_config.detect.stationary.threshold
# and it hasn't disappeared
and object_tracker.disappeared[obj["id"]] == 0
# and it doesn't overlap with any current motion boxes when not calibrating
and not intersects_any(
obj["box"],
[] if motion_detector.is_calibrating() else motion_boxes,
)
]
# get tracked object boxes that aren't stationary
tracked_object_boxes = [
(
# use existing object box for stationary objects
obj["estimate"]
if obj["motionless_count"]
< camera_config.detect.stationary.threshold
else obj["box"]
)
for obj in object_tracker.tracked_objects.values()
if obj["id"] not in stationary_object_ids
]
object_boxes = tracked_object_boxes + object_tracker.untracked_object_boxes
# get consolidated regions for tracked objects
regions = [
get_cluster_region(
frame_shape, region_min_size, candidate, object_boxes
)
for candidate in get_cluster_candidates(
frame_shape, region_min_size, object_boxes
)
]
# only add in the motion boxes when not calibrating and a ptz is not moving via autotracking
# ptz_moving_at_frame_time() always returns False for non-autotracking cameras
if not motion_detector.is_calibrating() and not ptz_moving_at_frame_time(
frame_time,
ptz_metrics.start_time.value,
ptz_metrics.stop_time.value,
):
# find motion boxes that are not inside tracked object regions
standalone_motion_boxes = [
b for b in motion_boxes if not inside_any(b, regions)
]
if standalone_motion_boxes:
motion_clusters = get_cluster_candidates(
frame_shape,
region_min_size,
standalone_motion_boxes,
)
motion_regions = [
get_cluster_region_from_grid(
frame_shape,
region_min_size,
candidate,
standalone_motion_boxes,
region_grid,
)
for candidate in motion_clusters
]
regions += motion_regions
# if starting up, get the next startup scan region
if startup_scan:
for region in get_startup_regions(
frame_shape, region_min_size, region_grid
):
regions.append(region)
startup_scan = False
# resize regions and detect
# seed with stationary objects
detections = [
(
obj["label"],
obj["score"],
obj["box"],
obj["area"],
obj["ratio"],
obj["region"],
)
for obj in object_tracker.tracked_objects.values()
if obj["id"] in stationary_object_ids
]
for region in regions:
detections.extend(
detect(
camera_config.detect,
object_detector,
frame,
model_config,
region,
camera_config.objects.track,
camera_config.objects.filters,
)
)
consolidated_detections = reduce_detections(frame_shape, detections)
# if detection was run on this frame, consolidate
if len(regions) > 0:
tracked_detections = [
d for d in consolidated_detections if d[0] not in all_attributes
]
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(
frame_name, frame_time, tracked_detections
)
# else, just update the frame times for the stationary objects
else:
object_tracker.update_frame_times(frame_name, frame_time)
# group the attribute detections based on what label they apply to
attribute_detections: dict[str, list[TrackedObjectAttribute]] = {}
for label, attribute_labels in attributes_map.items():
attribute_detections[label] = [
TrackedObjectAttribute(d)
for d in consolidated_detections
if d[0] in attribute_labels
]
# build detections
detections = {}
for obj in object_tracker.tracked_objects.values():
detections[obj["id"]] = {**obj, "attributes": []}
# find the best object for each attribute to be assigned to
all_objects: list[dict[str, Any]] = object_tracker.tracked_objects.values()
for attributes in attribute_detections.values():
for attribute in attributes:
filtered_objects = filter(
lambda o: attribute.label in attributes_map.get(o["label"], []),
all_objects,
)
selected_object_id = attribute.find_best_object(filtered_objects)
if selected_object_id is not None:
detections[selected_object_id]["attributes"].append(
attribute.get_tracking_data()
)
# debug object tracking
if False:
bgr_frame = cv2.cvtColor(
frame,
cv2.COLOR_YUV2BGR_I420,
)
object_tracker.debug_draw(bgr_frame, frame_time)
cv2.imwrite(
f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame
)
# debug
if False:
bgr_frame = cv2.cvtColor(
frame,
cv2.COLOR_YUV2BGR_I420,
)
for m_box in motion_boxes:
cv2.rectangle(
bgr_frame,
(m_box[0], m_box[1]),
(m_box[2], m_box[3]),
(0, 0, 255),
2,
)
for b in tracked_object_boxes:
cv2.rectangle(
bgr_frame,
(b[0], b[1]),
(b[2], b[3]),
(255, 0, 0),
2,
)
for obj in object_tracker.tracked_objects.values():
if obj["frame_time"] == frame_time:
thickness = 2
color = model_config.colormap.get(obj["label"], (255, 255, 255))
else:
thickness = 1
color = (255, 0, 0)
# draw the bounding boxes on the frame
box = obj["box"]
draw_box_with_label(
bgr_frame,
box[0],
box[1],
box[2],
box[3],
obj["label"],
obj["id"],
thickness=thickness,
color=color,
)
for region in regions:
cv2.rectangle(
bgr_frame,
(region[0], region[1]),
(region[2], region[3]),
(0, 255, 0),
2,
)
cv2.imwrite(
f"debug/frames/{camera_config.name}-{'{:.6f}'.format(frame_time)}.jpg",
bgr_frame,
)
# add to the queue if not full
if detected_objects_queue.full():
frame_manager.close(frame_name)
continue
else:
fps_tracker.update()
camera_metrics.process_fps.value = fps_tracker.eps()
detected_objects_queue.put(
(
camera_config.name,
frame_name,
frame_time,
detections,
motion_boxes,
regions,
)
)
camera_metrics.detection_fps.value = object_detector.fps.eps()
frame_manager.close(frame_name)
motion_detector.stop()
requestor.stop()
config_subscriber.stop()