mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-02 01:05:20 +03:00
168 lines
5.4 KiB
Python
168 lines
5.4 KiB
Python
import datetime
|
|
import logging
|
|
import multiprocessing as mp
|
|
import os
|
|
import queue
|
|
import signal
|
|
import threading
|
|
from frigate.config import DetectorConfig
|
|
from typing import Dict
|
|
|
|
import numpy as np
|
|
|
|
# import tflite_runtime.interpreter as tflite
|
|
from setproctitle import setproctitle
|
|
|
|
# from tflite_runtime.interpreter import load_delegate
|
|
|
|
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen
|
|
from .object_detector import ObjectDetector
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LocalObjectDetector(ObjectDetector):
|
|
def __init__(self, tf_device=None, model_path=None, num_threads=3):
|
|
self.fps = EventsPerSecond()
|
|
# TODO: process_clip
|
|
# if labels is None:
|
|
# self.labels = {}
|
|
# else:
|
|
# self.labels = load_labels(labels)
|
|
|
|
device_config = {"device": "usb"}
|
|
if not tf_device is None:
|
|
device_config = {"device": tf_device}
|
|
|
|
edge_tpu_delegate = None
|
|
|
|
# if tf_device != "cpu":
|
|
# try:
|
|
# logger.info(f"Attempting to load TPU as {device_config['device']}")
|
|
# edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
|
|
# logger.info("TPU found")
|
|
# self.interpreter = tflite.Interpreter(
|
|
# model_path=model_path or "/edgetpu_model.tflite",
|
|
# experimental_delegates=[edge_tpu_delegate],
|
|
# )
|
|
# except ValueError:
|
|
# logger.error(
|
|
# "No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors."
|
|
# )
|
|
# raise
|
|
# else:
|
|
# logger.warning(
|
|
# "CPU detectors are not recommended and should only be used for testing or for trial purposes."
|
|
# )
|
|
# self.interpreter = tflite.Interpreter(
|
|
# model_path=model_path or "/cpu_model.tflite", num_threads=num_threads
|
|
# )
|
|
|
|
# self.interpreter.allocate_tensors()
|
|
|
|
# self.tensor_input_details = self.interpreter.get_input_details()
|
|
# self.tensor_output_details = self.interpreter.get_output_details()
|
|
|
|
def detect(self, tensor_input, threshold=0.4):
|
|
# TODO: called from process_clip
|
|
detections = []
|
|
assert False, "implement detect() for process_clip.py"
|
|
|
|
# raw_detections = self.detect_raw(tensor_input)
|
|
|
|
# for d in raw_detections:
|
|
# if d[1] < threshold:
|
|
# break
|
|
# detections.append(
|
|
# (self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
|
|
# )
|
|
# self.fps.update()
|
|
return detections
|
|
|
|
def detect_raw(self, tensor_input):
|
|
# self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
|
# self.interpreter.invoke()
|
|
|
|
# boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
|
|
# class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
|
|
# scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
|
|
# count = int(
|
|
# self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
|
|
# )
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
# for i in range(count):
|
|
# if scores[i] < 0.4 or i == 20:
|
|
# break
|
|
# detections[i] = [
|
|
# class_ids[i],
|
|
# float(scores[i]),
|
|
# boxes[i][0],
|
|
# boxes[i][1],
|
|
# boxes[i][2],
|
|
# boxes[i][3],
|
|
# ]
|
|
|
|
return detections
|
|
|
|
|
|
def run_detector(
|
|
name: str,
|
|
detection_queue: mp.Queue,
|
|
out_events: Dict[str, mp.Event],
|
|
avg_speed,
|
|
start,
|
|
model_path,
|
|
model_shape,
|
|
detector_config: DetectorConfig,
|
|
):
|
|
threading.current_thread().name = f"detector:{name}"
|
|
logger = logging.getLogger(f"detector.{name}")
|
|
logger.info(f"Starting detection process: {os.getpid()}")
|
|
setproctitle(f"frigate.detector.{name}")
|
|
listen()
|
|
|
|
stop_event = mp.Event()
|
|
|
|
def receiveSignal(signalNumber, frame):
|
|
stop_event.set()
|
|
|
|
signal.signal(signal.SIGTERM, receiveSignal)
|
|
signal.signal(signal.SIGINT, receiveSignal)
|
|
|
|
frame_manager = SharedMemoryFrameManager()
|
|
object_detector = LocalObjectDetector(
|
|
tf_device=detector_config.device,
|
|
model_path=model_path,
|
|
num_threads=detector_config.num_threads,
|
|
)
|
|
|
|
outputs = {}
|
|
for name in out_events.keys():
|
|
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
|
|
out_np = np.ndarray((20, 6), dtype=np.float32, buffer=out_shm.buf)
|
|
outputs[name] = {"shm": out_shm, "np": out_np}
|
|
|
|
while not stop_event.is_set():
|
|
try:
|
|
connection_id = detection_queue.get(timeout=5)
|
|
except queue.Empty:
|
|
continue
|
|
input_frame = frame_manager.get(
|
|
connection_id, (1, model_shape[0], model_shape[1], 3)
|
|
)
|
|
|
|
if input_frame is None:
|
|
continue
|
|
|
|
# detect and send the output
|
|
start.value = datetime.datetime.now().timestamp()
|
|
detections = object_detector.detect_raw(input_frame)
|
|
duration = datetime.datetime.now().timestamp() - start.value
|
|
outputs[connection_id]["np"][:] = detections[:]
|
|
out_events[connection_id].set()
|
|
start.value = 0.0
|
|
|
|
avg_speed.value = (avg_speed.value * 9 + duration) / 10
|