frigate/docker/rocm/migraphx/netron_output.cpp
2025-02-03 20:53:47 +01:00

279 lines
9.0 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2025 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/netron_output.hpp>
#include <migraphx/json.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/module.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/base64.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace {
// from https://onnx.ai/onnx/intro/concepts.html
int get_onnx_type(shape::type_t s_type)
{
switch(s_type)
{
case shape::float_type: return 1;
case shape::uint8_type: return 2;
case shape::int8_type: return 3;
case shape::uint16_type: return 4;
case shape::int16_type: return 5;
case shape::int32_type: return 6;
case shape::int64_type: return 7;
case shape::bool_type: return 9;
case shape::half_type: return 10;
case shape::double_type: return 11;
case shape::uint32_type: return 12;
case shape::uint64_type: return 13;
case shape::bf16_type: return 16;
case shape::fp8e4m3fn_type: return 17;
case shape::fp8e4m3fnuz_type: return 18;
case shape::fp8e5m2_type: return 19;
case shape::fp8e5m2fnuz_type: return 20;
case shape::tuple_type: return 0;
}
MIGRAPHX_THROW("MIGraphX type " + std::to_string(s_type) + " not supported");
}
auto make_attribute(const migraphx::value& val)
{
value attribute = value(std::unordered_map<std::string, value>());
attribute["name"] = val.get_key();
auto val_string = val.to<std::string>();
std::string sub_str = val.get_key() + ":";
auto find_key = val_string.find(sub_str);
if(find_key != std::string::npos)
{
val_string = val_string.substr(find_key + sub_str.length() + 1);
}
// TODO: doesn't work for some reason with Netron now
// attribute["s"] = base64_encode(val_string);
// attribute["type"] = "STRING";
attribute["docString"] = val_string;
return attribute;
}
/// Returns a value with the JSON structure needed for a node
auto make_onnx_json_node(instruction_ref ins,
std::unordered_map<instruction_ref, std::string> ins_uids)
{
value node;
// TODO add support for module inputs
value input_arr = value({});
for(instruction_ref input_ins : ins->inputs())
{
auto name = input_ins->name();
if(name == "@literal" or name == "@param")
{
input_arr.push_back(ins_uids.at(input_ins));
}
// TODO make a better process for handling nodes to ignore
else if(name.find("hip::hip_allocate_memory") != std::string::npos)
{
continue;
}
else
{
input_arr.push_back(ins_uids.at(input_ins) + "->" + ins_uids.at(ins));
}
}
value output_arr = value({});
for(instruction_ref output_ins : ins->outputs())
{
if(output_ins->name() == "@return")
{
output_arr.push_back(ins_uids.at(output_ins));
}
else
{
output_arr.push_back(ins_uids.at(ins) + "->" + ins_uids.at(output_ins));
}
}
node["input"] = input_arr;
node["output"] = output_arr;
node["name"] = ins_uids.at(ins);
node["opType"] = ins->name();
value op_attribute_arr = value({});
auto op_value = ins->get_operator().to_value();
std::for_each(op_value.begin(), op_value.end(), [&](auto v) {
const std::string& attr_key = v.get_key();
if(v.is_binary() or attr_key == "code_object")
{
return;
}
else if(attr_key == "symbol_name" or attr_key == "name")
{
node["opType"] = migraphx::from_value<std::string>(v);
}
else
{
op_attribute_arr.push_back(make_attribute(v));
}
});
node["attribute"] = op_attribute_arr;
return node;
}
// ONNX graph constant data called "initializer"
auto make_onnx_json_literal(instruction_ref ins,
std::unordered_map<instruction_ref, std::string> ins_uids)
{
value lit;
lit["dims"] = ins->get_shape().lens();
lit["dataType"] = get_onnx_type(ins->get_shape().type());
lit["name"] = ins_uids.at(ins);
// ignoring literal data, setting to "NULL" in base64
lit["rawData"] = "TlVMTA==";
return lit;
}
// TODO handle dynamic shapes
// TODO handle subshapes
auto make_onnx_json_shape(const shape& s)
{
value ret;
value dim = value({});
for(std::size_t len : s.lens())
{
// cppcheck-suppress useStlAlgorithm
dim.push_back({{"dimValue", len}});
}
ret["dim"] = dim;
return ret;
}
// ONNX graph edges called "valueType"
auto make_onnx_json_edge(instruction_ref ins,
instruction_ref out_ins,
std::unordered_map<instruction_ref, std::string> ins_uids)
{
value ret;
shape ins_shape = ins->get_shape();
ret["name"] = ins_uids.at(ins) + "->" + ins_uids.at(out_ins);
value type = {{"tensorType",
{{"elemType", get_onnx_type(ins_shape.type())},
{"shape", make_onnx_json_shape(ins_shape)}}}};
ret["type"] = type;
return ret;
}
auto make_onnx_json_in_out(instruction_ref ins,
std::unordered_map<instruction_ref, std::string> ins_uids)
{
value ret;
shape ins_shape = ins->get_shape();
ret["name"] = ins_uids.at(ins);
value type = {{"tensorType",
{{"elemType", get_onnx_type(ins_shape.type())},
{"shape", make_onnx_json_shape(ins_shape)}}}};
ret["type"] = type;
return ret;
}
std::unordered_map<instruction_ref, std::string> make_ins_uids(const module& mod)
{
std::unordered_map<instruction_ref, std::string> ret;
int count = 0;
for(auto ins : iterator_for(mod))
{
std::string var_name;
var_name = mod.name() + ":";
var_name.append(ins->name() + ":");
var_name.append("@" + std::to_string(count));
count++;
ret.emplace(ins, var_name);
}
return ret;
}
value make_graph(const module* mod)
{
value graph = {{"node", value({})},
{"initializer", value({})},
{"input", value({})},
{"output", value({})},
{"valueInfo", value({})}};
auto ins_uids = make_ins_uids(*mod);
for(auto ins = mod->begin(); ins != mod->end(); ++ins)
{
const auto& name = ins->name();
if(name == "@literal")
{
graph["initializer"].push_back(make_onnx_json_literal(ins, ins_uids));
}
else if(name == "@param")
{
graph["input"].push_back(make_onnx_json_in_out(ins, ins_uids));
}
else if(name == "@return")
{
graph["output"].push_back(make_onnx_json_in_out(ins, ins_uids));
}
else if(name.find("hip::hip_allocate_memory") != std::string::npos)
{
continue;
}
else
{
graph["node"].push_back(make_onnx_json_node(ins, ins_uids));
const auto& outputs = ins->outputs();
for(auto out_ins : outputs)
{
if(out_ins->name() != "@return")
{
graph["valueInfo"].push_back(make_onnx_json_edge(ins, out_ins, ins_uids));
}
}
}
}
return graph;
}
} // namespace
std::string make_netron_output(const program& prog)
{
value output;
auto prog_value = prog.to_value();
// ONNX IR version 6
// TODO: investigate sure how this affects things
output["irVersion"] = 6;
output["producerName"] = "AMDMIGraphX";
output["producerVersion"] = prog_value.at("migraphx_version").to<std::string>();
for(auto& mod : prog.get_modules())
{
auto graph = make_graph(mod);
output["graph"] = graph;
}
return to_pretty_json_string(output, 4);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx