mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-19 01:17:06 +03:00
125 lines
4.5 KiB
C++
125 lines
4.5 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <migraphx/insert_pad.hpp>
|
|
#include <migraphx/program.hpp>
|
|
#include <migraphx/instruction.hpp>
|
|
#include <migraphx/op/convolution.hpp>
|
|
#include <migraphx/op/im2col.hpp>
|
|
#include <migraphx/op/pooling.hpp>
|
|
#include <migraphx/op/pad.hpp>
|
|
#include <migraphx/iterator_for.hpp>
|
|
#include <migraphx/stringutils.hpp>
|
|
|
|
namespace migraphx {
|
|
inline namespace MIGRAPHX_INLINE_NS {
|
|
|
|
static void update_op(const instruction_ref& input, const instruction_ref& ins, module& m)
|
|
{
|
|
auto op = ins->get_operator();
|
|
auto val = op.to_value();
|
|
auto op_padding = val.at("padding").to_vector<size_t>();
|
|
|
|
// skip if shape is dynamic
|
|
if(input->get_shape().dynamic())
|
|
{
|
|
return;
|
|
}
|
|
|
|
auto kdims = input->get_shape().lens().size() - 2;
|
|
if(std::equal(op_padding.begin(),
|
|
op_padding.begin() + kdims,
|
|
op_padding.begin() + kdims,
|
|
op_padding.end()))
|
|
return;
|
|
|
|
std::vector<int64_t> padding(input->get_shape().lens().size() * 2, 0);
|
|
std::vector<size_t> pads_l(op_padding.begin(), op_padding.begin() + kdims);
|
|
std::vector<size_t> pads_r(op_padding.begin() + kdims, op_padding.end());
|
|
op_padding = std::vector<size_t>(kdims * 2, 0);
|
|
op.from_value({{"padding", op_padding}});
|
|
|
|
std::copy(pads_l.begin(), pads_l.end(), padding.begin() + 2);
|
|
std::copy(pads_r.begin(), pads_r.end(), padding.begin() + kdims + 2 + 2);
|
|
|
|
auto pad_op = m.insert_instruction(ins, op::pad{padding}, input);
|
|
|
|
auto new_inputs = ins->inputs();
|
|
new_inputs.front() = pad_op;
|
|
|
|
m.replace_instruction(ins, op, new_inputs);
|
|
}
|
|
|
|
static void update_pooling(const instruction_ref& input, const instruction_ref& ins, module& m)
|
|
{
|
|
auto op = any_cast<op::pooling>(ins->get_operator());
|
|
if(op.mode == op::pooling_mode::average)
|
|
{
|
|
return;
|
|
}
|
|
auto kdims = input->get_shape().ndim() - 2;
|
|
if(std::equal(op.padding.begin(),
|
|
op.padding.begin() + kdims,
|
|
op.padding.begin() + kdims,
|
|
op.padding.end()))
|
|
return;
|
|
|
|
std::vector<int64_t> padding(input->get_shape().ndim() * 2, 0);
|
|
std::vector<size_t> pads_l(op.padding.begin(), op.padding.begin() + kdims);
|
|
std::vector<size_t> pads_r(op.padding.begin() + kdims, op.padding.end());
|
|
op.padding = std::vector<size_t>(kdims * 2, 0);
|
|
std::copy(pads_l.begin(), pads_l.end(), padding.begin() + 2);
|
|
std::copy(pads_r.begin(), pads_r.end(), padding.begin() + kdims + 2 + 2);
|
|
|
|
float pad_val = 0.0f; // for the lpnorm
|
|
if(op.mode == op::pooling_mode::max)
|
|
{
|
|
// maxpool uses lowest value for padding
|
|
pad_val = std::numeric_limits<float>::lowest();
|
|
}
|
|
auto pad_op = m.insert_instruction(ins, op::pad{padding, pad_val}, input);
|
|
|
|
auto new_inputs = ins->inputs();
|
|
new_inputs.front() = pad_op;
|
|
|
|
m.replace_instruction(ins, op, new_inputs);
|
|
}
|
|
|
|
void insert_pad::apply(module& m) const
|
|
{
|
|
for(auto ins : iterator_for(m))
|
|
{
|
|
const std::string& op_name = ins->name();
|
|
if(not contains(ops, op_name))
|
|
continue;
|
|
auto input = ins->inputs().front();
|
|
if(op_name == "convolution" or op_name == "im2col")
|
|
update_op(input, ins, m);
|
|
else if(op_name == "pooling")
|
|
update_pooling(input, ins, m);
|
|
}
|
|
}
|
|
|
|
} // namespace MIGRAPHX_INLINE_NS
|
|
} // namespace migraphx
|