frigate/docker/rocm/migraphx/common_dims.cpp
2025-02-03 20:53:47 +01:00

204 lines
6.3 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/common_dims.hpp>
#include <migraphx/ranges.hpp>
#include <algorithm>
#include <cassert>
#include <numeric>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <class Iterator>
static auto compute_end_dim(Iterator start, Iterator last, std::size_t dim)
{
std::size_t x = 1;
auto it = std::find_if(start, last, [&](auto i) {
x *= i;
return x > dim;
});
if(x < dim)
return start;
return it;
}
struct common_dim_state
{
common_dim_state(const std::vector<std::size_t>& pdims,
std::vector<std::vector<std::size_t>>& paxes_map)
: dims(&pdims), axes_map(&paxes_map), it(dims->begin())
{
}
const std::vector<std::size_t>* dims = nullptr;
std::vector<std::vector<std::size_t>>* axes_map = nullptr;
std::vector<std::size_t>::const_iterator it{};
std::size_t rem = 1;
std::size_t get() const { return *it / rem; }
bool is_end() const { return it == dims->end(); }
void next(std::size_t i = 1) { it += i; }
auto dims_for(std::size_t d) const
{
auto dim_end = compute_end_dim(it, dims->end(), d);
return range(it, dim_end);
}
void add_axes(std::size_t naxes, std::size_t start) MIGRAPHX_TIDY_CONST
{
auto axes = compute_axes(naxes, start);
axes_map->push_back(std::move(axes));
}
void add_multi_axes(std::size_t naxes, std::size_t start) MIGRAPHX_TIDY_CONST
{
auto axes = compute_axes(naxes, start);
std::transform(axes.begin(),
axes.end(),
std::back_inserter(*axes_map),
[&](auto axis) -> std::vector<std::size_t> { return {axis}; });
}
std::vector<std::size_t> compute_axes(std::size_t naxes, std::size_t start) const
{
if(rem != 1)
{
assert(start > 0);
naxes++;
start--;
}
std::vector<std::size_t> axes(naxes);
std::iota(axes.begin(), axes.end(), start);
return axes;
}
};
static bool compute_common_dim(std::vector<std::size_t>& cd_dims,
common_dim_state& state1,
common_dim_state& state2)
{
assert(state1.get() < state2.get());
auto d2 = state2.get();
auto dims = state1.dims_for(d2);
auto n = elements(dims);
auto naxes = distance(dims);
if(naxes == 0)
return false;
// If not divisible then we can't compute a common dim
if((d2 % n) != 0)
return false;
auto rem = d2 / n;
state1.add_multi_axes(naxes, cd_dims.size());
state2.add_axes(rem == 1 ? naxes : naxes + 1, cd_dims.size());
state1.rem = rem;
state2.rem = 1;
cd_dims.insert(cd_dims.end(), dims.begin(), dims.end());
if(state1.rem != 1)
cd_dims.push_back(state1.rem);
state1.next(distance(dims));
state2.next();
return true;
}
common_dims common_dims::compute(const std::vector<std::size_t>& dims1,
const std::vector<std::size_t>& dims2)
{
assert(elements(dims1) > 0);
assert(elements(dims1) == elements(dims2));
common_dims cd;
common_dim_state state1{dims1, cd.axes_map1};
common_dim_state state2{dims2, cd.axes_map2};
while(not state1.is_end() and not state2.is_end())
{
auto d1 = state1.get();
auto d2 = state2.get();
if(d1 == d2)
{
state1.add_axes(1, cd.dims.size());
state2.add_axes(1, cd.dims.size());
state1.rem = 1;
state2.rem = 1;
cd.dims.push_back(d1);
state1.next();
state2.next();
}
else if(d1 < d2)
{
if(not compute_common_dim(cd.dims, state1, state2))
return {};
}
else // if(d1 > d2)
{
if(not compute_common_dim(cd.dims, state2, state1))
return {};
}
}
assert(elements(dims1) == elements(cd.dims));
return cd;
}
const std::vector<std::vector<std::size_t>>* common_dims::get_axes_map(std::size_t n) const
{
if(axes_map1.size() == n)
return &axes_map1;
if(axes_map2.size() == n)
return &axes_map2;
return nullptr;
}
std::vector<std::size_t>
common_dims::get_dimensions_for(const std::vector<std::size_t>& idims) const
{
if(dims.size() == idims.size())
return idims;
if(elements(dims) == elements(idims))
return dims;
// Bail for now since its ambiguous which axes map can be used
// TODO: Check for similiarity
if(axes_map1.size() == axes_map2.size())
return {};
const auto* axes_map = get_axes_map(idims.size());
if(axes_map == nullptr)
return {};
auto xdims = dims;
for(auto i : range(axes_map->size()))
{
auto dim = idims[i];
const auto& axes = (*axes_map)[i];
if(axes.size() == 1)
{
xdims[axes.front()] = dim;
}
else if(dim == 1)
{
for(auto axis : axes)
xdims[axis] = 1;
}
}
if(elements(xdims) == elements(idims))
return xdims;
return {};
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx