frigate/frigate/data_processing/post/review_descriptions.py
Nicolas Mowen 094a0a6e05
Add ability to change source of images for review descriptions (#20676)
* Add ability to change source of images for review descriptions

* Undo
2025-10-26 08:40:38 -05:00

448 lines
15 KiB
Python

"""Post processor for review items to get descriptions."""
import copy
import datetime
import logging
import math
import os
import shutil
import threading
from pathlib import Path
from typing import Any
import cv2
from peewee import DoesNotExist
from frigate.comms.embeddings_updater import EmbeddingsRequestEnum
from frigate.comms.inter_process import InterProcessRequestor
from frigate.config import FrigateConfig
from frigate.config.camera.review import GenAIReviewConfig, ImageSourceEnum
from frigate.const import CACHE_DIR, CLIPS_DIR, UPDATE_REVIEW_DESCRIPTION
from frigate.data_processing.types import PostProcessDataEnum
from frigate.genai import GenAIClient
from frigate.models import Recordings, ReviewSegment
from frigate.util.builtin import EventsPerSecond, InferenceSpeed
from frigate.util.image import get_image_from_recording
from ..post.api import PostProcessorApi
from ..types import DataProcessorMetrics
logger = logging.getLogger(__name__)
class ReviewDescriptionProcessor(PostProcessorApi):
def __init__(
self,
config: FrigateConfig,
requestor: InterProcessRequestor,
metrics: DataProcessorMetrics,
client: GenAIClient,
):
super().__init__(config, metrics, None)
self.requestor = requestor
self.metrics = metrics
self.genai_client = client
self.review_desc_speed = InferenceSpeed(self.metrics.review_desc_speed)
self.review_descs_dps = EventsPerSecond()
self.review_descs_dps.start()
def calculate_frame_count(
self, image_source: ImageSourceEnum = ImageSourceEnum.preview
) -> int:
"""Calculate optimal number of frames based on context size and image source."""
context_size = self.genai_client.get_context_size()
if image_source == ImageSourceEnum.recordings:
# With recordings at 480p resolution (480px height), each image uses ~200-300 tokens
# This is ~2-3x more than preview images, so we reduce frame count accordingly
# to avoid exceeding context limits and maintain reasonable inference times
if context_size > 10000:
return 12
elif context_size > 6000:
return 10
elif context_size > 4000:
return 8
else:
return 6
else:
# With preview images (180px height), each image uses ~100 tokens
# We can send more frames since they're lower resolution
if context_size > 10000:
return 20
elif context_size > 6000:
return 16
elif context_size > 4000:
return 12
else:
return 8
def process_data(self, data, data_type):
self.metrics.review_desc_dps.value = self.review_descs_dps.eps()
if data_type != PostProcessDataEnum.review:
return
camera = data["after"]["camera"]
camera_config = self.config.cameras[camera]
if not camera_config.review.genai.enabled:
return
id = data["after"]["id"]
if data["type"] == "new" or data["type"] == "update":
return
else:
final_data = data["after"]
if (
final_data["severity"] == "alert"
and not camera_config.review.genai.alerts
):
return
elif (
final_data["severity"] == "detection"
and not camera_config.review.genai.detections
):
return
image_source = camera_config.review.genai.image_source
if image_source == ImageSourceEnum.recordings:
thumbs = self.get_recording_frames(
camera,
final_data["start_time"],
final_data["end_time"],
height=480, # Use 480p for good balance between quality and token usage
)
if not thumbs:
# Fallback to preview frames if no recordings available
logger.warning(
f"No recording frames found for {camera}, falling back to preview frames"
)
thumbs = self.get_preview_frames_as_bytes(
camera,
final_data["start_time"],
final_data["end_time"],
final_data["thumb_path"],
id,
camera_config.review.genai.debug_save_thumbnails,
)
elif camera_config.review.genai.debug_save_thumbnails:
# Save debug thumbnails for recordings
Path(os.path.join(CLIPS_DIR, "genai-requests", id)).mkdir(
parents=True, exist_ok=True
)
for idx, frame_bytes in enumerate(thumbs):
with open(
os.path.join(CLIPS_DIR, f"genai-requests/{id}/{idx}.jpg"),
"wb",
) as f:
f.write(frame_bytes)
else:
# Use preview frames
thumbs = self.get_preview_frames_as_bytes(
camera,
final_data["start_time"],
final_data["end_time"],
final_data["thumb_path"],
id,
camera_config.review.genai.debug_save_thumbnails,
)
# kickoff analysis
self.review_descs_dps.update()
threading.Thread(
target=run_analysis,
args=(
self.requestor,
self.genai_client,
self.review_desc_speed,
camera,
final_data,
thumbs,
camera_config.review.genai,
list(self.config.model.merged_labelmap.values()),
),
).start()
def handle_request(self, topic, request_data):
if topic == EmbeddingsRequestEnum.summarize_review.value:
start_ts = request_data["start_ts"]
end_ts = request_data["end_ts"]
logger.debug(
f"Found GenAI Review Summary request for {start_ts} to {end_ts}"
)
items: list[dict[str, Any]] = [
r["data"]["metadata"]
for r in (
ReviewSegment.select(ReviewSegment.data)
.where(
(ReviewSegment.data["metadata"].is_null(False))
& (ReviewSegment.start_time < end_ts)
& (ReviewSegment.end_time > start_ts)
)
.order_by(ReviewSegment.start_time.asc())
.dicts()
.iterator()
)
]
if len(items) == 0:
logger.debug("No review items with metadata found during time period")
return "No activity was found during this time."
important_items = list(
filter(
lambda item: item.get("potential_threat_level", 0) > 0
or item.get("other_concerns"),
items,
)
)
if not important_items:
return "No concerns were found during this time period."
if self.config.review.genai.debug_save_thumbnails:
Path(
os.path.join(CLIPS_DIR, "genai-requests", f"{start_ts}-{end_ts}")
).mkdir(parents=True, exist_ok=True)
return self.genai_client.generate_review_summary(
start_ts,
end_ts,
important_items,
self.config.review.genai.debug_save_thumbnails,
)
else:
return None
def get_cache_frames(
self,
camera: str,
start_time: float,
end_time: float,
) -> list[str]:
preview_dir = os.path.join(CACHE_DIR, "preview_frames")
file_start = f"preview_{camera}"
start_file = f"{file_start}-{start_time}.webp"
end_file = f"{file_start}-{end_time}.webp"
all_frames = []
for file in sorted(os.listdir(preview_dir)):
if not file.startswith(file_start):
continue
if file < start_file:
if len(all_frames):
all_frames[0] = os.path.join(preview_dir, file)
else:
all_frames.append(os.path.join(preview_dir, file))
continue
if file > end_file:
all_frames.append(os.path.join(preview_dir, file))
break
all_frames.append(os.path.join(preview_dir, file))
frame_count = len(all_frames)
desired_frame_count = self.calculate_frame_count()
if frame_count <= desired_frame_count:
return all_frames
selected_frames = []
step_size = (frame_count - 1) / (desired_frame_count - 1)
for i in range(desired_frame_count):
index = round(i * step_size)
selected_frames.append(all_frames[index])
return selected_frames
def get_recording_frames(
self,
camera: str,
start_time: float,
end_time: float,
height: int = 480,
) -> list[bytes]:
"""Get frames from recordings at specified timestamps."""
duration = end_time - start_time
desired_frame_count = self.calculate_frame_count(ImageSourceEnum.recordings)
# Calculate evenly spaced timestamps throughout the duration
if desired_frame_count == 1:
timestamps = [start_time + duration / 2]
else:
step = duration / (desired_frame_count - 1)
timestamps = [start_time + (i * step) for i in range(desired_frame_count)]
def extract_frame_from_recording(ts: float) -> bytes | None:
"""Extract a single frame from recording at given timestamp."""
try:
recording = (
Recordings.select(
Recordings.path,
Recordings.start_time,
)
.where((ts >= Recordings.start_time) & (ts <= Recordings.end_time))
.where(Recordings.camera == camera)
.order_by(Recordings.start_time.desc())
.limit(1)
.get()
)
time_in_segment = ts - recording.start_time
return get_image_from_recording(
self.config.ffmpeg,
recording.path,
time_in_segment,
"mjpeg",
height=height,
)
except DoesNotExist:
return None
frames = []
for timestamp in timestamps:
try:
# Try to extract frame at exact timestamp
image_data = extract_frame_from_recording(timestamp)
if not image_data:
# Try with rounded timestamp as fallback
rounded_timestamp = math.ceil(timestamp)
image_data = extract_frame_from_recording(rounded_timestamp)
if image_data:
frames.append(image_data)
else:
logger.warning(
f"No recording found for {camera} at timestamp {timestamp}"
)
except Exception as e:
logger.error(
f"Error extracting frame from recording for {camera} at {timestamp}: {e}"
)
continue
return frames
def get_preview_frames_as_bytes(
self,
camera: str,
start_time: float,
end_time: float,
thumb_path_fallback: str,
review_id: str,
save_debug: bool,
) -> list[bytes]:
"""Get preview frames and convert them to JPEG bytes.
Args:
camera: Camera name
start_time: Start timestamp
end_time: End timestamp
thumb_path_fallback: Fallback thumbnail path if no preview frames found
review_id: Review item ID for debug saving
save_debug: Whether to save debug thumbnails
Returns:
List of JPEG image bytes
"""
frame_paths = self.get_cache_frames(camera, start_time, end_time)
if not frame_paths:
frame_paths = [thumb_path_fallback]
thumbs = []
for idx, thumb_path in enumerate(frame_paths):
thumb_data = cv2.imread(thumb_path)
ret, jpg = cv2.imencode(
".jpg", thumb_data, [int(cv2.IMWRITE_JPEG_QUALITY), 100]
)
if ret:
thumbs.append(jpg.tobytes())
if save_debug:
Path(os.path.join(CLIPS_DIR, "genai-requests", review_id)).mkdir(
parents=True, exist_ok=True
)
shutil.copy(
thumb_path,
os.path.join(CLIPS_DIR, f"genai-requests/{review_id}/{idx}.webp"),
)
return thumbs
@staticmethod
def run_analysis(
requestor: InterProcessRequestor,
genai_client: GenAIClient,
review_inference_speed: InferenceSpeed,
camera: str,
final_data: dict[str, str],
thumbs: list[bytes],
genai_config: GenAIReviewConfig,
labelmap_objects: list[str],
) -> None:
start = datetime.datetime.now().timestamp()
analytics_data = {
"id": final_data["id"],
"camera": camera,
"zones": final_data["data"]["zones"],
"start": datetime.datetime.fromtimestamp(final_data["start_time"]).strftime(
"%A, %I:%M %p"
),
"duration": round(final_data["end_time"] - final_data["start_time"]),
}
objects = []
named_objects = []
objects_list = final_data["data"]["objects"]
sub_labels_list = final_data["data"]["sub_labels"]
for label in objects_list:
if "-verified" in label:
continue
elif label in labelmap_objects:
objects.append(label.replace("_", " ").title())
for i, verified_label in enumerate(final_data["data"]["verified_objects"]):
named_objects.append(
f"{sub_labels_list[i].replace('_', ' ').title()} ({verified_label.replace('-verified', '')})"
)
analytics_data["objects"] = objects
analytics_data["recognized_objects"] = named_objects
metadata = genai_client.generate_review_description(
analytics_data,
thumbs,
genai_config.additional_concerns,
genai_config.preferred_language,
genai_config.debug_save_thumbnails,
genai_config.activity_context_prompt,
)
review_inference_speed.update(datetime.datetime.now().timestamp() - start)
if not metadata:
return None
prev_data = copy.deepcopy(final_data)
final_data["data"]["metadata"] = metadata.model_dump()
requestor.send_data(
UPDATE_REVIEW_DESCRIPTION,
{
"type": "genai",
"before": {k: v for k, v in prev_data.items()},
"after": {k: v for k, v in final_data.items()},
},
)