/* * The MIT License (MIT) * * Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { template struct reduce_parser : op_parser { instruction_ref parse_reduce_oper(const std::string& op_name, const onnx_parser& parser, onnx_parser::node_info info, std::vector args) const { auto constant_axes = parse_constant_axes(args, info); int noop_with_empty_axes = parse_attribute("noop_with_empty_axes", parser, info).value_or(0); int keep_dims = parse_attribute("keepdims", parser, info).value_or(1); std::vector all_axes(args.front()->get_shape().ndim()); std::iota(all_axes.begin(), all_axes.end(), 0); // Handle axes attribute, constant input axes, and missing both attribute and input cases if(constant_axes.has_value()) { if(noop_with_empty_axes != 0 and constant_axes->empty()) return args[0]; if(noop_with_empty_axes == 0 and constant_axes->empty()) constant_axes = all_axes; auto reduce = info.add_instruction(make_op(op_name, {{"axes", *constant_axes}}), args[0]); if(keep_dims == 0) return info.add_instruction(make_op("squeeze", {{"axes", *constant_axes}}), reduce); return reduce; } // Handle variable input axes if(keep_dims == 0) MIGRAPHX_THROW("Keepdims not supported with runtime provided axes"); // Empty axes attribute indicates to the operator to look for axes in the inputs // If the input axes are empty, the default behavior of reduce_op is to be an // identity operator auto reduce_op = make_op(op_name, {{"axes", {}}}); if(noop_with_empty_axes != 0) return info.add_instruction(reduce_op, args); if(args[1]->get_shape().dynamic()) { auto reduce_input_axes = info.add_instruction(reduce_op, args); auto all_axes_lit = info.add_literal( literal{shape{shape::type_t::int64_type, {all_axes.size()}}, all_axes}); auto reduce_all_axes = info.add_instruction(reduce_op, args[0], all_axes_lit); auto zero = info.add_literal(literal{shape{shape::type_t::int64_type}, {0u}}); auto axes_size = info.add_instruction(make_op("dimensions_of", {{"end", 1}}), args[1]); auto is_axes_empty = info.add_instruction(make_op("equal"), axes_size, zero); return info.add_instruction( make_op("where"), is_axes_empty, reduce_all_axes, reduce_input_axes); } else if(args[1]->get_shape().elements() == 0) { auto all_axes_lit = info.add_literal( literal{shape{shape::type_t::int64_type, {all_axes.size()}}, all_axes}); return info.add_instruction(reduce_op, args[0], all_axes_lit); } else { return info.add_instruction(reduce_op, args); } } private: template std::optional parse_attribute(const std::string& attribute_name, const onnx_parser& parser, onnx_parser::node_info& info) const { if(not contains(info.attributes, attribute_name)) return std::nullopt; return parser.parse_value(info.attributes[attribute_name]).at(); } std::optional> parse_constant_axes(std::vector& args, onnx_parser::node_info& info) const { std::vector axes; if(args.size() == 2) { if(not args[1]->can_eval()) return std::nullopt; args[1]->eval().visit([&](auto s) { axes.assign(s.begin(), s.end()); }); } else if(contains(info.attributes, "axes")) { auto&& attr_axes = info.attributes["axes"].ints(); axes.assign(attr_axes.begin(), attr_axes.end()); } return axes; } }; struct parse_reduce_op : reduce_parser { std::vector operators() const { return {{"ReduceMax", "reduce_max"}, {"ReduceMean", "reduce_mean"}, {"ReduceMin", "reduce_min"}, {"ReduceProd", "reduce_prod"}, {"ReduceSum", "reduce_sum"}}; } instruction_ref parse(const op_desc& opd, const onnx_parser& parser, onnx_parser::node_info info, std::vector args) const { return parse_reduce_oper(opd.op_name, parser, std::move(info), std::move(args)); } }; struct parse_reduce_l1 : reduce_parser { std::vector operators() const { return {{"ReduceL1"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& parser, onnx_parser::node_info info, std::vector args) const { args[0] = info.add_instruction(make_op("abs"), args[0]); return parse_reduce_oper("reduce_sum", parser, std::move(info), std::move(args)); } }; struct parse_reduce_l2 : reduce_parser { std::vector operators() const { return {{"ReduceL2"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& parser, const onnx_parser::node_info& info, std::vector args) const { args[0] = info.add_instruction(make_op("mul"), args[0], args[0]); auto sum_ins = parse_reduce_oper("reduce_sum", parser, info, std::move(args)); return info.add_instruction(make_op("sqrt"), sum_ins); } }; struct parse_reduce_log_sum : reduce_parser { std::vector operators() const { return {{"ReduceLogSum"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& parser, const onnx_parser::node_info& info, std::vector args) const { auto sum_ins = parse_reduce_oper("reduce_sum", parser, info, std::move(args)); return info.add_instruction(make_op("log"), sum_ins); } }; struct parse_reduce_log_sum_exp : reduce_parser { std::vector operators() const { return {{"ReduceLogSumExp"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& parser, const onnx_parser::node_info& info, std::vector args) const { args[0] = info.add_instruction(make_op("exp"), args[0]); auto sum_ins = parse_reduce_oper("reduce_sum", parser, info, std::move(args)); return info.add_instruction(make_op("log"), sum_ins); } }; struct parse_reduce_sum_square : reduce_parser { std::vector operators() const { return {{"ReduceSumSquare"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& parser, onnx_parser::node_info info, std::vector args) const { args[0] = info.add_instruction(make_op("mul"), args[0], args[0]); return parse_reduce_oper("reduce_sum", parser, std::move(info), std::move(args)); } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx