"""Util for classification models.""" import datetime import json import logging import os import random from collections import defaultdict import cv2 import numpy as np from frigate.comms.embeddings_updater import EmbeddingsRequestEnum, EmbeddingsRequestor from frigate.comms.inter_process import InterProcessRequestor from frigate.config import FfmpegConfig from frigate.const import ( CLIPS_DIR, MODEL_CACHE_DIR, PROCESS_PRIORITY_LOW, UPDATE_MODEL_STATE, ) from frigate.log import redirect_output_to_logger from frigate.models import Event, Recordings, ReviewSegment from frigate.types import ModelStatusTypesEnum from frigate.util.file import get_event_thumbnail_bytes from frigate.util.image import get_image_from_recording from frigate.util.process import FrigateProcess BATCH_SIZE = 16 EPOCHS = 50 LEARNING_RATE = 0.001 TRAINING_METADATA_FILE = ".training_metadata.json" logger = logging.getLogger(__name__) def write_training_metadata(model_name: str, image_count: int) -> None: """ Write training metadata to a hidden file in the model's clips directory. Args: model_name: Name of the classification model image_count: Number of images used in training """ clips_model_dir = os.path.join(CLIPS_DIR, model_name) os.makedirs(clips_model_dir, exist_ok=True) metadata_path = os.path.join(clips_model_dir, TRAINING_METADATA_FILE) metadata = { "last_training_date": datetime.datetime.now().isoformat(), "last_training_image_count": image_count, } try: with open(metadata_path, "w") as f: json.dump(metadata, f, indent=2) logger.info(f"Wrote training metadata for {model_name}: {image_count} images") except Exception as e: logger.error(f"Failed to write training metadata for {model_name}: {e}") def read_training_metadata(model_name: str) -> dict[str, any] | None: """ Read training metadata from the hidden file in the model's clips directory. Args: model_name: Name of the classification model Returns: Dictionary with last_training_date and last_training_image_count, or None if not found """ clips_model_dir = os.path.join(CLIPS_DIR, model_name) metadata_path = os.path.join(clips_model_dir, TRAINING_METADATA_FILE) if not os.path.exists(metadata_path): return None try: with open(metadata_path, "r") as f: metadata = json.load(f) return metadata except Exception as e: logger.error(f"Failed to read training metadata for {model_name}: {e}") return None def get_dataset_image_count(model_name: str) -> int: """ Count the total number of images in the model's dataset directory. Args: model_name: Name of the classification model Returns: Total count of images across all categories """ dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset") if not os.path.exists(dataset_dir): return 0 total_count = 0 try: for category in os.listdir(dataset_dir): category_dir = os.path.join(dataset_dir, category) if not os.path.isdir(category_dir): continue image_files = [ f for f in os.listdir(category_dir) if f.lower().endswith((".webp", ".png", ".jpg", ".jpeg")) ] total_count += len(image_files) except Exception as e: logger.error(f"Failed to count dataset images for {model_name}: {e}") return 0 return total_count class ClassificationTrainingProcess(FrigateProcess): def __init__(self, model_name: str) -> None: super().__init__( stop_event=None, priority=PROCESS_PRIORITY_LOW, name=f"model_training:{model_name}", ) self.model_name = model_name def run(self) -> None: self.pre_run_setup() success = self.__train_classification_model() exit(0 if success else 1) def __generate_representative_dataset_factory(self, dataset_dir: str): def generate_representative_dataset(): image_paths = [] for root, dirs, files in os.walk(dataset_dir): for file in files: if file.lower().endswith((".jpg", ".jpeg", ".png")): image_paths.append(os.path.join(root, file)) for path in image_paths[:300]: img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (224, 224)) img_array = np.array(img, dtype=np.float32) / 255.0 img_array = img_array[None, ...] yield [img_array] return generate_representative_dataset @redirect_output_to_logger(logger, logging.DEBUG) def __train_classification_model(self) -> bool: """Train a classification model.""" try: # import in the function so that tensorflow is not initialized multiple times import tensorflow as tf from tensorflow.keras import layers, models, optimizers from tensorflow.keras.applications import MobileNetV2 from tensorflow.keras.preprocessing.image import ImageDataGenerator dataset_dir = os.path.join(CLIPS_DIR, self.model_name, "dataset") model_dir = os.path.join(MODEL_CACHE_DIR, self.model_name) os.makedirs(model_dir, exist_ok=True) num_classes = len( [ d for d in os.listdir(dataset_dir) if os.path.isdir(os.path.join(dataset_dir, d)) ] ) if num_classes < 2: logger.error( f"Training failed for {self.model_name}: Need at least 2 classes, found {num_classes}" ) return False # Start with imagenet base model with 35% of channels in each layer base_model = MobileNetV2( input_shape=(224, 224, 3), include_top=False, weights="imagenet", alpha=0.35, ) base_model.trainable = False # Freeze pre-trained layers model = models.Sequential( [ base_model, layers.GlobalAveragePooling2D(), layers.Dense(128, activation="relu"), layers.Dropout(0.3), layers.Dense(num_classes, activation="softmax"), ] ) model.compile( optimizer=optimizers.Adam(learning_rate=LEARNING_RATE), loss="categorical_crossentropy", metrics=["accuracy"], ) # create training set datagen = ImageDataGenerator(rescale=1.0 / 255, validation_split=0.2) train_gen = datagen.flow_from_directory( dataset_dir, target_size=(224, 224), batch_size=BATCH_SIZE, class_mode="categorical", subset="training", ) total_images = train_gen.samples logger.debug( f"Training {self.model_name}: {total_images} images across {num_classes} classes" ) # write labelmap class_indices = train_gen.class_indices index_to_class = {v: k for k, v in class_indices.items()} sorted_classes = [index_to_class[i] for i in range(len(index_to_class))] with open(os.path.join(model_dir, "labelmap.txt"), "w") as f: for class_name in sorted_classes: f.write(f"{class_name}\n") # train the model logger.debug(f"Training {self.model_name} for {EPOCHS} epochs...") model.fit(train_gen, epochs=EPOCHS, verbose=0) logger.debug(f"Converting {self.model_name} to TFLite...") # convert model to tflite converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.representative_dataset = ( self.__generate_representative_dataset_factory(dataset_dir) ) converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.inference_input_type = tf.uint8 converter.inference_output_type = tf.uint8 tflite_model = converter.convert() # write model model_path = os.path.join(model_dir, "model.tflite") with open(model_path, "wb") as f: f.write(tflite_model) # verify model file was written successfully if not os.path.exists(model_path) or os.path.getsize(model_path) == 0: logger.error( f"Training failed for {self.model_name}: Model file was not created or is empty" ) return False # write training metadata with image count dataset_image_count = get_dataset_image_count(self.model_name) write_training_metadata(self.model_name, dataset_image_count) logger.info(f"Finished training {self.model_name}") return True except Exception as e: logger.error(f"Training failed for {self.model_name}: {e}", exc_info=True) return False def kickoff_model_training( embeddingRequestor: EmbeddingsRequestor, model_name: str ) -> None: requestor = InterProcessRequestor() requestor.send_data( UPDATE_MODEL_STATE, { "model": model_name, "state": ModelStatusTypesEnum.training, }, ) # run training in sub process so that # tensorflow will free CPU / GPU memory # upon training completion training_process = ClassificationTrainingProcess(model_name) training_process.start() training_process.join() # check if training succeeded by examining the exit code training_success = training_process.exitcode == 0 if training_success: # reload model and mark training as complete embeddingRequestor.send_data( EmbeddingsRequestEnum.reload_classification_model.value, {"model_name": model_name}, ) requestor.send_data( UPDATE_MODEL_STATE, { "model": model_name, "state": ModelStatusTypesEnum.complete, }, ) else: logger.error( f"Training subprocess failed for {model_name} (exit code: {training_process.exitcode})" ) # mark training as failed so UI shows error state # don't reload the model since it failed requestor.send_data( UPDATE_MODEL_STATE, { "model": model_name, "state": ModelStatusTypesEnum.failed, }, ) requestor.stop() @staticmethod def collect_state_classification_examples( model_name: str, cameras: dict[str, tuple[float, float, float, float]] ) -> None: """ Collect representative state classification examples from review items. This function: 1. Queries review items from specified cameras 2. Selects 100 balanced timestamps across the data 3. Extracts keyframes from recordings (cropped to specified regions) 4. Selects 20 most visually distinct images 5. Saves them to the dataset directory Args: model_name: Name of the classification model cameras: Dict mapping camera names to normalized crop coordinates [x1, y1, x2, y2] (0-1) """ dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset") temp_dir = os.path.join(dataset_dir, "temp") os.makedirs(temp_dir, exist_ok=True) # Step 1: Get review items for the cameras camera_names = list(cameras.keys()) review_items = list( ReviewSegment.select() .where(ReviewSegment.camera.in_(camera_names)) .where(ReviewSegment.end_time.is_null(False)) .order_by(ReviewSegment.start_time.asc()) ) if not review_items: logger.warning(f"No review items found for cameras: {camera_names}") return # Step 2: Create balanced timestamp selection (100 samples) timestamps = _select_balanced_timestamps(review_items, target_count=100) # Step 3: Extract keyframes from recordings with crops applied keyframes = _extract_keyframes( "/usr/lib/ffmpeg/7.0/bin/ffmpeg", timestamps, temp_dir, cameras ) # Step 4: Select 24 most visually distinct images (they're already cropped) distinct_images = _select_distinct_images(keyframes, target_count=24) # Step 5: Save to train directory for later classification train_dir = os.path.join(CLIPS_DIR, model_name, "train") os.makedirs(train_dir, exist_ok=True) saved_count = 0 for idx, image_path in enumerate(distinct_images): dest_path = os.path.join(train_dir, f"example_{idx:03d}.jpg") try: img = cv2.imread(image_path) if img is not None: cv2.imwrite(dest_path, img) saved_count += 1 except Exception as e: logger.error(f"Failed to save image {image_path}: {e}") import shutil try: shutil.rmtree(temp_dir) except Exception as e: logger.warning(f"Failed to clean up temp directory: {e}") def _select_balanced_timestamps( review_items: list[ReviewSegment], target_count: int = 100 ) -> list[dict]: """ Select balanced timestamps from review items. Strategy: - Group review items by camera and time of day - Sample evenly across groups to ensure diversity - For each selected review item, pick a random timestamp within its duration Returns: List of dicts with keys: camera, timestamp, review_item """ # Group by camera and hour of day for temporal diversity grouped = defaultdict(list) for item in review_items: camera = item.camera # Group by 6-hour blocks for temporal diversity hour_block = int(item.start_time // (6 * 3600)) key = f"{camera}_{hour_block}" grouped[key].append(item) # Calculate how many samples per group num_groups = len(grouped) if num_groups == 0: return [] samples_per_group = max(1, target_count // num_groups) timestamps = [] # Sample from each group for group_items in grouped.values(): # Take samples_per_group items from this group sample_size = min(samples_per_group, len(group_items)) sampled_items = random.sample(group_items, sample_size) for item in sampled_items: # Pick a random timestamp within the review item's duration duration = item.end_time - item.start_time if duration <= 0: continue # Sample from middle 80% to avoid edge artifacts offset = random.uniform(duration * 0.1, duration * 0.9) timestamp = item.start_time + offset timestamps.append( { "camera": item.camera, "timestamp": timestamp, "review_item": item, } ) # If we don't have enough, sample more from larger groups while len(timestamps) < target_count and len(timestamps) < len(review_items): for group_items in grouped.values(): if len(timestamps) >= target_count: break # Pick a random item not already sampled item = random.choice(group_items) duration = item.end_time - item.start_time if duration <= 0: continue offset = random.uniform(duration * 0.1, duration * 0.9) timestamp = item.start_time + offset # Check if we already have a timestamp near this one if not any(abs(t["timestamp"] - timestamp) < 1.0 for t in timestamps): timestamps.append( { "camera": item.camera, "timestamp": timestamp, "review_item": item, } ) return timestamps[:target_count] def _extract_keyframes( ffmpeg_path: str, timestamps: list[dict], output_dir: str, camera_crops: dict[str, tuple[float, float, float, float]], ) -> list[str]: """ Extract keyframes from recordings at specified timestamps and crop to specified regions. Args: ffmpeg_path: Path to ffmpeg binary timestamps: List of timestamp dicts from _select_balanced_timestamps output_dir: Directory to save extracted frames camera_crops: Dict mapping camera names to normalized crop coordinates [x1, y1, x2, y2] (0-1) Returns: List of paths to successfully extracted and cropped keyframe images """ keyframe_paths = [] for idx, ts_info in enumerate(timestamps): camera = ts_info["camera"] timestamp = ts_info["timestamp"] if camera not in camera_crops: logger.warning(f"No crop coordinates for camera {camera}") continue norm_x1, norm_y1, norm_x2, norm_y2 = camera_crops[camera] try: recording = ( Recordings.select() .where( (timestamp >= Recordings.start_time) & (timestamp <= Recordings.end_time) & (Recordings.camera == camera) ) .order_by(Recordings.start_time.desc()) .limit(1) .get() ) except Exception: continue relative_time = timestamp - recording.start_time try: config = FfmpegConfig(path="/usr/lib/ffmpeg/7.0") image_data = get_image_from_recording( config, recording.path, relative_time, codec="mjpeg", height=None, ) if image_data: nparr = np.frombuffer(image_data, np.uint8) img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) if img is not None: height, width = img.shape[:2] x1 = int(norm_x1 * width) y1 = int(norm_y1 * height) x2 = int(norm_x2 * width) y2 = int(norm_y2 * height) x1_clipped = max(0, min(x1, width)) y1_clipped = max(0, min(y1, height)) x2_clipped = max(0, min(x2, width)) y2_clipped = max(0, min(y2, height)) if x2_clipped > x1_clipped and y2_clipped > y1_clipped: cropped = img[y1_clipped:y2_clipped, x1_clipped:x2_clipped] resized = cv2.resize(cropped, (224, 224)) output_path = os.path.join(output_dir, f"frame_{idx:04d}.jpg") cv2.imwrite(output_path, resized) keyframe_paths.append(output_path) except Exception as e: logger.debug( f"Failed to extract frame from {recording.path} at {relative_time}s: {e}" ) continue return keyframe_paths def _select_distinct_images( image_paths: list[str], target_count: int = 20 ) -> list[str]: """ Select the most visually distinct images from a set of keyframes. Uses a greedy algorithm based on image histograms: 1. Start with a random image 2. Iteratively add the image that is most different from already selected images 3. Difference is measured using histogram comparison Args: image_paths: List of paths to candidate images target_count: Number of distinct images to select Returns: List of paths to selected images """ if len(image_paths) <= target_count: return image_paths histograms = {} valid_paths = [] for path in image_paths: try: img = cv2.imread(path) if img is None: continue hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) hist = cv2.calcHist( [hsv], [0, 1, 2], None, [8, 8, 8], [0, 180, 0, 256, 0, 256] ) hist = cv2.normalize(hist, hist).flatten() histograms[path] = hist valid_paths.append(path) except Exception as e: logger.debug(f"Failed to process image {path}: {e}") continue if len(valid_paths) <= target_count: return valid_paths selected = [] first_image = random.choice(valid_paths) selected.append(first_image) remaining = [p for p in valid_paths if p != first_image] while len(selected) < target_count and remaining: max_min_distance = -1 best_candidate = None for candidate in remaining: min_distance = float("inf") for selected_img in selected: distance = cv2.compareHist( histograms[candidate], histograms[selected_img], cv2.HISTCMP_BHATTACHARYYA, ) min_distance = min(min_distance, distance) if min_distance > max_min_distance: max_min_distance = min_distance best_candidate = candidate if best_candidate: selected.append(best_candidate) remaining.remove(best_candidate) else: break return selected @staticmethod def collect_object_classification_examples( model_name: str, label: str, ) -> None: """ Collect representative object classification examples from event thumbnails. This function: 1. Queries events for the specified label 2. Selects 100 balanced events across different cameras and times 3. Retrieves thumbnails for selected events (with 33% center crop applied) 4. Selects 24 most visually distinct thumbnails 5. Saves to dataset directory Args: model_name: Name of the classification model label: Object label to collect (e.g., "person", "car") cameras: List of camera names to collect examples from """ dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset") temp_dir = os.path.join(dataset_dir, "temp") os.makedirs(temp_dir, exist_ok=True) # Step 1: Query events for the specified label and cameras events = list( Event.select().where((Event.label == label)).order_by(Event.start_time.asc()) ) if not events: logger.warning(f"No events found for label '{label}'") return logger.debug(f"Found {len(events)} events") # Step 2: Select balanced events (100 samples) selected_events = _select_balanced_events(events, target_count=100) logger.debug(f"Selected {len(selected_events)} events") # Step 3: Extract thumbnails from events thumbnails = _extract_event_thumbnails(selected_events, temp_dir) logger.debug(f"Successfully extracted {len(thumbnails)} thumbnails") # Step 4: Select 24 most visually distinct thumbnails distinct_images = _select_distinct_images(thumbnails, target_count=24) logger.debug(f"Selected {len(distinct_images)} distinct images") # Step 5: Save to train directory for later classification train_dir = os.path.join(CLIPS_DIR, model_name, "train") os.makedirs(train_dir, exist_ok=True) saved_count = 0 for idx, image_path in enumerate(distinct_images): dest_path = os.path.join(train_dir, f"example_{idx:03d}.jpg") try: img = cv2.imread(image_path) if img is not None: cv2.imwrite(dest_path, img) saved_count += 1 except Exception as e: logger.error(f"Failed to save image {image_path}: {e}") import shutil try: shutil.rmtree(temp_dir) except Exception as e: logger.warning(f"Failed to clean up temp directory: {e}") logger.debug( f"Successfully collected {saved_count} classification examples in {train_dir}" ) def _select_balanced_events( events: list[Event], target_count: int = 100 ) -> list[Event]: """ Select balanced events from the event list. Strategy: - Group events by camera and time of day - Sample evenly across groups to ensure diversity - Prioritize events with higher scores Returns: List of selected events """ grouped = defaultdict(list) for event in events: camera = event.camera hour_block = int(event.start_time // (6 * 3600)) key = f"{camera}_{hour_block}" grouped[key].append(event) num_groups = len(grouped) if num_groups == 0: return [] samples_per_group = max(1, target_count // num_groups) selected = [] for group_events in grouped.values(): sorted_events = sorted( group_events, key=lambda e: e.data.get("score", 0) if e.data else 0, reverse=True, ) sample_size = min(samples_per_group, len(sorted_events)) selected.extend(sorted_events[:sample_size]) if len(selected) < target_count: remaining = [e for e in events if e not in selected] remaining_sorted = sorted( remaining, key=lambda e: e.data.get("score", 0) if e.data else 0, reverse=True, ) needed = target_count - len(selected) selected.extend(remaining_sorted[:needed]) return selected[:target_count] def _extract_event_thumbnails(events: list[Event], output_dir: str) -> list[str]: """ Extract thumbnails from events and save to disk. Args: events: List of Event objects output_dir: Directory to save thumbnails Returns: List of paths to successfully extracted thumbnail images """ thumbnail_paths = [] for idx, event in enumerate(events): try: thumbnail_bytes = get_event_thumbnail_bytes(event) if thumbnail_bytes: nparr = np.frombuffer(thumbnail_bytes, np.uint8) img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) if img is not None: height, width = img.shape[:2] crop_size = 1.0 if event.data and "box" in event.data and "region" in event.data: box = event.data["box"] region = event.data["region"] if len(box) == 4 and len(region) == 4: box_w, box_h = box[2], box[3] region_w, region_h = region[2], region[3] box_area = (box_w * box_h) / (region_w * region_h) if box_area < 0.05: crop_size = 0.4 elif box_area < 0.10: crop_size = 0.5 elif box_area < 0.20: crop_size = 0.65 elif box_area < 0.35: crop_size = 0.80 else: crop_size = 0.95 crop_width = int(width * crop_size) crop_height = int(height * crop_size) x1 = (width - crop_width) // 2 y1 = (height - crop_height) // 2 x2 = x1 + crop_width y2 = y1 + crop_height cropped = img[y1:y2, x1:x2] resized = cv2.resize(cropped, (224, 224)) output_path = os.path.join(output_dir, f"thumbnail_{idx:04d}.jpg") cv2.imwrite(output_path, resized) thumbnail_paths.append(output_path) except Exception as e: logger.debug(f"Failed to extract thumbnail for event {event.id}: {e}") continue return thumbnail_paths