/* * The MIT License (MIT) * * Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { std::vector transform_quantize_dequantize_linear_inputs(const onnx_parser::node_info& info, const std::string& onnx_name, int block_size, int axis, std::vector args) { const auto x = args.at(0); const auto x_lens = x->get_shape().lens(); const auto x_rank = x_lens.size(); instruction_ref y_scale = args.at(1); const auto y_scale_lens = y_scale->get_shape().lens(); const auto y_scale_rank = y_scale_lens.size(); // Per-tensor (per-layer) granularity if(y_scale->get_shape().elements() == 1) { std::transform(args.begin() + 1, args.end(), args.begin() + 1, [&](auto ins) { return info.add_instruction(make_op("multibroadcast", {{"out_lens", x_lens}}), ins); }); } // Per-axis granularity else if(y_scale_rank == 1) { axis = tune_axis(x_rank, axis, onnx_name); if(x_lens[axis] != y_scale_lens[0]) { MIGRAPHX_THROW(onnx_name + ": For per axis granularity the length of y_scale (actual: " + to_string(y_scale_lens[0]) + ") must be equal to size of x on axis " + to_string(axis) + "(actual: " + to_string(x_lens[axis]) + ")"); } std::transform(args.begin() + 1, args.end(), args.begin() + 1, [&](auto ins) { return info.add_instruction( make_op("broadcast", {{"axis", axis}, {"out_lens", x_lens}}), ins); }); } // Blocked granularity else { axis = tune_axis(x_rank, axis, onnx_name); if(x_rank != y_scale_rank) { MIGRAPHX_THROW(onnx_name + ": x(rank: " + to_string(x_rank) + ") and y_scale(rank: " + to_string(y_scale_rank) + ") must be of same rank for block granularity"); } for(auto i = 0u; i < x_lens.size(); ++i) { if(x_lens[i] != y_scale_lens[i] and i != axis) { MIGRAPHX_THROW(onnx_name + ": x(shape: " + to_string_range(x_lens) + ") and y_scale(shape: " + to_string_range(y_scale_lens) + ") shapes may only differ along provided axis(" + to_string(axis) + ")"); } } // Given x shape (D0, ..., Di, ..., Dn), y_scale shape (S0, ... Si, ...Sn) and // axis=i, the accepted range is [ceil(Di/Si), ceil(Di/(Si-1))-1] float di = x_lens[axis]; float si = y_scale_lens[axis]; int block_size_min = std::ceil(di / si); int block_size_max = std::ceil(di / (si - 1)) - 1; // default block_size if not given is calculated (to support quark generated models): if(block_size == 0) block_size = block_size_min; if(block_size < block_size_min or block_size > block_size_max) MIGRAPHX_THROW(onnx_name + ": Block size(actual: " + to_string(block_size) + ") must be within range [" + to_string(block_size_min) + ", " + to_string(block_size_max) + "]"); std::transform(args.begin() + 1, args.end(), args.begin() + 1, [&](auto ins) { if(block_size == 1) return ins; ins = info.add_instruction(make_op("unsqueeze", {{"axes", {axis + 1}}}), ins); auto bc_lens = ins->get_shape().lens(); bc_lens[axis + 1] = block_size; ins = info.add_instruction(make_op("multibroadcast", {{"out_lens", bc_lens}}), ins); auto reshape_lens = x_lens; reshape_lens[axis] = ins->get_shape().lens()[axis] * block_size; ins = info.add_instruction(make_op("reshape", {{"dims", reshape_lens}}), ins); // Detect runt block if(x_lens[axis] < reshape_lens[axis]) { ins = info.add_instruction( make_op("slice", {{"axes", {axis}}, {"starts", {0}}, {"ends", {x_lens[axis]}}}), ins); } return ins; }); } return args; } } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx