/* * The MIT License (MIT) * * Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_quantizelinear : op_parser { std::vector operators() const { return {{"QuantizeLinear"}}; } instruction_ref parse(const op_desc& opd, const onnx_parser& parser, const onnx_parser::node_info& info, std::vector args) const { if(args.size() < 2 or args.size() > 3) { MIGRAPHX_THROW("QuantizeLinear: must have either 2 or 3 inputs, " + std::to_string(args.size()) + " input(s) provided"); } // Starting with version 19 ONNX introduced the constraint that x and y_scale types must be // the same if(parser.opset_version >= 19 and args[0]->get_shape().type() != args[1]->get_shape().type()) { MIGRAPHX_THROW("QuantizeLinear: x and y_scale must be of same type"); } if(args.size() == 3 and args[1]->get_shape().lens() != args[2]->get_shape().lens()) { MIGRAPHX_THROW( "QuantizeLinear: y_scale and y_zero_point shapes must be equal. Provided y_scale " "shape: " + to_string_range(args[1]->get_shape().lens()) + ", provided y_zero_point shape: " + to_string_range(args[2]->get_shape().lens())); } int axis = 1; if(contains(info.attributes, "axis")) axis = info.attributes.at("axis").i(); int block_size = 0; if(contains(info.attributes, "block_size")) block_size = info.attributes.at("block_size").i(); std::optional output_type; if(contains(info.attributes, "output_dtype")) { output_type = get_type(info.attributes.at("output_dtype").i()); } if(output_type.has_value() and args.size() == 3 and *output_type != args[2]->get_shape().type()) { MIGRAPHX_THROW( "QuantizeLinear: output_type and y_zero_point type must match. output_type: " + to_string(*output_type) + +", y_zero_point type: " + to_string(args[2]->get_shape().type())); } args = transform_quantize_dequantize_linear_inputs( info, opd.onnx_name, block_size, axis, args); if(parser.opset_version < 19) { auto common_type = common_shape({args[0]->get_shape(), args[1]->get_shape()}).type(); std::transform(args.begin(), args.begin() + 2, args.begin(), [&](auto ins) { if(ins->get_shape().type() != common_type) ins = info.add_instruction(make_op("convert", {{"target_type", common_type}}), ins); return ins; }); } if(output_type.has_value()) return info.add_instruction(make_op("quantizelinear", {{"out_type", *output_type}}), args); else return info.add_instruction(make_op("quantizelinear"), args); } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx