/* * The MIT License (MIT) * * Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace gpu { using namespace migraphx::gpu::gen; // NOLINT static const char* const simple_reduce_kernel = R"__migraphx__( #include #include #include #include namespace migraphx { ${preamble} extern "C" { MIGRAPHX_GLOBAL void reduce_kernel(void* input_p, void* output_p) { transform_args(make_tensors(), ${transformers})(input_p, output_p)([](auto input, auto output) { simple_reduce(${reduction}, ${init}, input, output, ${read}, ${write}); }); } } } // namespace migraphx )__migraphx__"; static std::vector get_reduce_lens(const std::vector& input_lens, const std::vector& output_lens) { std::vector reduce_lens; std::transform(output_lens.begin(), output_lens.end(), input_lens.begin(), std::back_inserter(reduce_lens), [](auto x, auto y) -> std::size_t { if(x == y) return 1; else return y; }); return reduce_lens; } template static shape get_reduced_shape(const shape& s, const std::vector& axes) { auto lens = s.lens(); std::fill(lens.begin(), lens.end(), 1); for(const auto& axis : axes) lens[axis] = s.lens()[axis]; return s.with_lens(lens); } template static shape get_output_shape(const shape& s, const std::vector& axes) { auto lens = s.lens(); for(const auto& axis : axes) lens[axis] = 1; return s.with_lens(lens); } template static std::string get_reduce_algo(context& ctx, const std::vector& inputs, ReduceLens rlens) { const auto init = std::numeric_limits::max(); auto relements = std::accumulate(rlens.begin(), rlens.end(), 1, std::multiplies<>{}); // The minimum stride auto min_stride = std::inner_product( rlens.begin(), rlens.end(), inputs.front().strides().begin(), init, [](auto x, auto y) { return std::min(x, y); }, [](auto len, auto stride) { return len == 1 ? init : stride; }); if(min_stride > 2) return "lane"; if(relements <= ctx.get_current_device().get_wavefront_size()) return "wave"; return "block"; } static std::string get_reduce_algo(context& ctx, const std::vector& inputs) { auto rlens = get_reduce_lens(inputs.front().lens(), inputs.back().lens()); return get_reduce_algo(ctx, inputs, rlens); } static std::size_t compute_subwave_size(context& ctx, std::size_t n) { std::size_t max_wavefront_size = ctx.get_current_device().get_wavefront_size(); std::size_t wavefront_size = 1; while(wavefront_size <= n and wavefront_size < max_wavefront_size) wavefront_size *= 2; return wavefront_size; } /// This will adjust the input shapes so a partial reduction is done per workgroup. /// This is done by splitting the reduction axis so each split group becomes /// part of the batch. So if we want to do a split redution of a tensor /// {K}, then this will create a tensor of {K/N, N} where N is the number of /// split groups. To compute the number of split groups it finds the largest /// divisor that can divide K to make it less than min_size. static std::vector split_reduce(const std::vector& inputs, std::size_t min_size = 1024) { std::vector result; auto input_shape = inputs.front(); const auto& reduce_shape = inputs[inputs.size() - 2]; const auto& output_shape = inputs[inputs.size() - 1]; auto is = range(reduce_shape.lens().size()); using array_type = std::array; auto initial = array_type{std::numeric_limits::max(), std::numeric_limits::max()}; auto faxis = transform_accumulate( is.begin(), is.end(), initial, MIGRAPHX_LIFT(std::min), [&](auto i) -> array_type { if(input_shape.lens()[i] == output_shape.lens()[i]) return initial; return {input_shape.strides()[i], std::size_t(i)}; })[1]; assert(faxis < reduce_shape.lens().size()); std::size_t n = 1; auto r = input_shape.lens()[faxis]; auto factors = make_array(2, 3, 5, 7, 11); while(r > min_size) { // NOLINTNEXTLINE(readability-qualified-auto) auto it = std::find_if(factors.begin(), factors.end(), [&](auto d) { return r % d == 0; }); if(it == factors.end()) break; r /= *it; n *= *it; } assert(n != 1); std::transform( inputs.begin(), inputs.end(), std::back_inserter(result), [&](const shape& s) -> shape { auto lens = s.lens(); auto strides = s.strides(); lens.push_back(n); if(lens[faxis] == 1) { strides.push_back(0); } else { lens[faxis] /= n; strides.push_back(strides[faxis] * lens[faxis]); } return {s.type(), lens, strides}; }); return reduce_dims(normalize_permutation(result)); } struct simple_reduce_compiler : compiler { std::vector names() const { return {"simple_reduce", "reduce_sum", "reduce_mean", "reduce_max", "reduce_min", "reduce_prod", "reduce_any", "reduce_all"}; } static std::size_t get_reduce_elements(const std::vector& inputs) { return inputs.front().elements() / inputs.back().elements(); } operation compile_op(context& ctx, const std::vector& inputs, const value& v) const { hip_compile_options options; options.inputs = inputs; options.output = inputs.back(); options.virtual_inputs = reduce_dims(inputs); auto faxis = find_fast_axis({options.virtual_inputs.front()}); vectorize vec{}; auto nelements = options.virtual_inputs.back().elements(); auto algo = v.get("algo", get_reduce_algo(ctx, options.virtual_inputs)); if(algo == "block" or algo == "wave") { // Vectorize if the axis is a reduction axis if(options.virtual_inputs.back().lens()[faxis] == 1) vec = vectorize::elements(ctx, faxis, options.virtual_inputs); auto relements = get_reduce_elements(options.virtual_inputs) / vec.size; if(algo == "block") { auto block_size = compute_block_size(ctx, relements, 256); if(relements >= block_size * 256) algo = "block_large"; options.set_launch_params( v, compute_global_for(ctx, nelements * block_size, 256), block_size); } else { auto subwave_size = compute_subwave_size(ctx, relements); algo = "subwave<" + std::to_string(subwave_size) + ">"; options.set_launch_params(v, compute_global_for(ctx, nelements * subwave_size, 256), ctx.get_current_device().get_wavefront_size()); } } else if(algo == "lane") { options.set_launch_params(v, compute_global_for(ctx, nelements, 256)); } else { MIGRAPHX_THROW("Unknown reduce algo: " + algo); } options.kernel_name = "reduce_kernel"; std::string identity = "[](auto x) { return x; }"; auto src = interpolate_string(simple_reduce_kernel, {{"reduction", v.at("reduction").to()}, {"init", v.get("init", std::string{"0"})}, {"read", v.get("read", identity)}, {"write", v.get("write", identity)}, {"algo", algo}, {"transformers", make_transformer_args(vec)}, {"preamble", v.get("preamble", std::string{})}}); options.emplace_param("-Wno-float-equal"); return compile_hip_code_object(ctx, src, options); } compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const { value v = value::object{}; reduce_op r{}; r.set(ins, op); v["reduction"] = r.reduction; v["read"] = r.read; v["write"] = r.write; v["init"] = r.init; return compile_op(ctx, to_shapes(ins->inputs()), v); } }; static const char* const fused_reduce_kernel = R"__migraphx__( #include #include #include #include #include namespace migraphx { ${preamble} extern "C" { MIGRAPHX_GLOBAL void ${kernel}(${params}) { transform_args(make_tensors(), ${transformers}, rotate_and_pack_last<${noutputs}>())(${args})([](auto y, auto... xs) { fused_reduce(y, ${assign}{}, partial(${lambda})(xs...)); }); } } } // namespace migraphx )__migraphx__"; struct fused_reduce_compiler : compiler { std::vector names() const { return {"fused_reduce", "split_fused_reduce"}; } static shape get_input_shape(const std::vector& inputs) { auto it = std::max_element(inputs.begin(), inputs.end(), by(std::less<>{}, [](const shape& s) { return s.elements(); })); return *it; } operation compile_op(context& ctx, const std::vector& inputs, const value& v) const { auto assign = v.get("assign", "assign_none"); auto axes = v.at("axes").to_vector(); auto finputs = flatten(inputs); auto noutputs = finputs.size() - inputs.size() + 1; auto virtual_inputs = finputs; virtual_inputs.push_back(get_reduced_shape(get_input_shape(finputs), axes)); virtual_inputs.push_back(get_output_shape(get_input_shape(finputs), axes)); virtual_inputs = reduce_dims(normalize_permutation(virtual_inputs)); if(assign != "assign_none") virtual_inputs = split_reduce(virtual_inputs); auto reduce_output_shape = virtual_inputs.back(); virtual_inputs.pop_back(); auto reduction_shape = virtual_inputs.back(); virtual_inputs.pop_back(); hip_compile_options options; options.inputs = finputs; options.output = inputs.back(); options.virtual_inputs = virtual_inputs; auto faxis = find_fast_axis({options.virtual_inputs.front()}); vectorize vec{}; auto nelements = reduce_output_shape.elements(); auto algo = v.get("algo", get_reduce_algo(ctx, options.virtual_inputs, reduction_shape.lens())); if(algo == "block" or algo == "wave") { // Vectorize if the axis is a reduction axis if(reduce_output_shape.lens()[faxis] == 1) vec = vectorize::elements(ctx, faxis, options.virtual_inputs); auto relements = reduction_shape.elements() / vec.size; if(algo == "block") { auto block_size = compute_block_size(ctx, relements, 256); if(relements >= block_size * 256) algo = "block_large"; options.set_launch_params( v, compute_global_for(ctx, nelements * block_size, 256), block_size); } else { auto subwave_size = compute_subwave_size(ctx, relements); algo = "subwave<" + std::to_string(subwave_size) + ">"; options.set_launch_params(v, compute_global_for(ctx, nelements * subwave_size, 256), ctx.get_current_device().get_wavefront_size()); } } else if(algo == "lane") { options.set_launch_params(v, compute_global_for(ctx, nelements, 256)); } else { MIGRAPHX_THROW("Unknown reduce algo: " + algo); } options.kernel_name = v.get("kernel", "reduce_kernel"); auto src = interpolate_string( fused_reduce_kernel, {{"kernel", options.kernel_name}, {"params", enum_params(finputs.size(), "void * private_p")}, {"args", enum_params(finputs.size(), "private_p")}, {"assign", assign}, {"algo", algo}, {"reduced", "decltype(" + generate_make_shape(reduce_output_shape) + ")"}, {"lambda", v.at("lambda").to()}, {"transformers", make_transformer_args(vec)}, {"noutputs", std::to_string(noutputs)}, {"preamble", v.get("preamble", std::string{})}}); options.emplace_param("-Wno-float-equal"); return compile_hip_code_object(ctx, src, options); } compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const { assert(not ins->module_inputs().empty()); auto v = op.to_value(); auto* rm = ins->module_inputs().front(); v["preamble"] = generate_reduce(*rm, "fused_reduce_op"); v["lambda"] = "MIGRAPHX_LIFT(fused_reduce_op)"; v["kernel"] = generate_name_from_ops(*rm) + "_kernel"; return compile_op(ctx, to_shapes(ins->inputs()), v); } }; } // namespace gpu } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx