Following the https://github.com/jkjung-avt/tensorrt_demos#demo-5-yolov4 A build.sh file will convert pre-trained yolov3 and yolov4 models through ONNX to TensorRT engines. The implementation with a "yolo_layer" plugin has been updated to speed up inference time of the yolov3/yolov4 models. Current "yolo_layer" plugin implementation is based on TensorRT's IPluginV2IOExt. It only works for TensorRT 6+. "yolo_layer" developed plugin by referencing similar plugin code by wang-xinyu and dongfangduoshou123. So big thanks to both of them. Output will be copied to the ./model folder ## Available models | TensorRT engine | mAP @
IoU=0.5:0.95 | mAP @
IoU=0.5 | FPS on Nano | |:------------------------|:---------------------:|:------------------:|:-----------:| | yolov3-tiny-288 (FP16) | 0.077 | 0.158 | 35.8 | | yolov3-tiny-416 (FP16) | 0.096 | 0.202 | 25.5 | | yolov3-288 (FP16) | 0.331 | 0.601 | 8.16 | | yolov3-416 (FP16) | 0.373 | 0.664 | 4.93 | | yolov3-608 (FP16) | 0.376 | 0.665 | 2.53 | | yolov3-spp-288 (FP16) | 0.339 | 0.594 | 8.16 | | yolov3-spp-416 (FP16) | 0.391 | 0.664 | 4.82 | | yolov3-spp-608 (FP16) | 0.410 | 0.685 | 2.49 | | yolov4-tiny-288 (FP16) | 0.179 | 0.344 | 36.6 | | yolov4-tiny-416 (FP16) | 0.196 | 0.387 | 25.5 | | yolov4-288 (FP16) | 0.376 | 0.591 | 7.93 | | yolov4-416 (FP16) | 0.459 | 0.700 | 4.62 | | yolov4-608 (FP16) | 0.488 | 0.736 | 2.35 | | yolov4-csp-256 (FP16) | 0.336 | 0.502 | 12.8 | | yolov4-csp-512 (FP16) | 0.436 | 0.630 | 4.26 | | yolov4x-mish-320 (FP16) | 0.400 | 0.581 | 4.79 | | yolov4x-mish-640 (FP16) | 0.470 | 0.668 | 1.46 | Please update frigate/converters/yolo4/assets/run.sh to add necessary models Note: This will consume pretty significant amound of memory. You might consider extending swap on Jetson Nano Usage: cd ./frigate/converters/yolo4/ ./build.sh