mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 13:34:13 +03:00
Compare commits
15 Commits
e99dddc9c9
...
859a10c4e5
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
859a10c4e5 | ||
|
|
9ab78f496c | ||
|
|
8a360eecf8 | ||
|
|
acb17a7b50 | ||
|
|
7933a83a42 | ||
|
|
2eef58aa1d | ||
|
|
6659b7cb0f | ||
|
|
f134796913 | ||
|
|
b4abbd7d3b | ||
|
|
438df7d484 | ||
|
|
e27a94ae0b | ||
|
|
1dee548dbc | ||
|
|
91e17e12b7 | ||
|
|
bb45483e9e | ||
|
|
7b4eaf2d10 |
27
.github/workflows/ci.yml
vendored
27
.github/workflows/ci.yml
vendored
@ -136,7 +136,6 @@ jobs:
|
||||
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-tensorrt,mode=max
|
||||
- name: AMD/ROCm general build
|
||||
env:
|
||||
AMDGPU: gfx
|
||||
HSA_OVERRIDE: 0
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
@ -225,3 +224,29 @@ jobs:
|
||||
sources: |
|
||||
ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}:${{ env.SHORT_SHA }}-amd64
|
||||
ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}:${{ env.SHORT_SHA }}-rpi
|
||||
axera_build:
|
||||
runs-on: ubuntu-22.04
|
||||
name: AXERA Build
|
||||
needs:
|
||||
- amd64_build
|
||||
- arm64_build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
with:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Build and push Axera build
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
source: .
|
||||
push: true
|
||||
targets: axcl
|
||||
files: docker/axcl/axcl.hcl
|
||||
set: |
|
||||
axcl.tags=${{ steps.setup.outputs.image-name }}-axcl
|
||||
*.cache-from=type=gha
|
||||
55
docker/axcl/Dockerfile
Normal file
55
docker/axcl/Dockerfile
Normal file
@ -0,0 +1,55 @@
|
||||
# syntax=docker/dockerfile:1.6
|
||||
|
||||
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Globally set pip break-system-packages option to avoid having to specify it every time
|
||||
ARG PIP_BREAK_SYSTEM_PACKAGES=1
|
||||
|
||||
|
||||
FROM frigate AS frigate-axcl
|
||||
ARG TARGETARCH
|
||||
ARG PIP_BREAK_SYSTEM_PACKAGES
|
||||
|
||||
# Install axpyengine
|
||||
RUN wget https://github.com/AXERA-TECH/pyaxengine/releases/download/0.1.3.rc1/axengine-0.1.3-py3-none-any.whl -O /axengine-0.1.3-py3-none-any.whl
|
||||
RUN pip3 install -i https://mirrors.aliyun.com/pypi/simple/ /axengine-0.1.3-py3-none-any.whl \
|
||||
&& rm /axengine-0.1.3-py3-none-any.whl
|
||||
|
||||
# Install axcl
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
echo "Installing x86_64 version of axcl"; \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_x86_64_V3.6.5_20250908154509_NO4973.deb -O /axcl.deb; \
|
||||
else \
|
||||
echo "Installing aarch64 version of axcl"; \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb -O /axcl.deb; \
|
||||
fi
|
||||
|
||||
RUN mkdir /unpack_axcl && \
|
||||
dpkg-deb -x /axcl.deb /unpack_axcl && \
|
||||
cp -R /unpack_axcl/usr/bin/axcl /usr/bin/ && \
|
||||
cp -R /unpack_axcl/usr/lib/axcl /usr/lib/ && \
|
||||
rm -rf /unpack_axcl /axcl.deb
|
||||
|
||||
|
||||
# Install axcl ffmpeg
|
||||
RUN mkdir -p /usr/lib/ffmpeg/axcl
|
||||
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffmpeg-x64 -O /usr/lib/ffmpeg/axcl/ffmpeg && \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffprobe-x64 -O /usr/lib/ffmpeg/axcl/ffprobe; \
|
||||
else \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffmpeg-aarch64 -O /usr/lib/ffmpeg/axcl/ffmpeg && \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffprobe-aarch64 -O /usr/lib/ffmpeg/axcl/ffprobe; \
|
||||
fi
|
||||
|
||||
RUN chmod +x /usr/lib/ffmpeg/axcl/ffmpeg /usr/lib/ffmpeg/axcl/ffprobe
|
||||
|
||||
# Set ldconfig path
|
||||
RUN echo "/usr/lib/axcl" > /etc/ld.so.conf.d/ax.conf
|
||||
|
||||
# Set env
|
||||
ENV PATH="$PATH:/usr/bin/axcl"
|
||||
ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/lib/axcl"
|
||||
|
||||
ENTRYPOINT ["sh", "-c", "ldconfig && exec /init"]
|
||||
13
docker/axcl/axcl.hcl
Normal file
13
docker/axcl/axcl.hcl
Normal file
@ -0,0 +1,13 @@
|
||||
target frigate {
|
||||
dockerfile = "docker/main/Dockerfile"
|
||||
platforms = ["linux/amd64", "linux/arm64"]
|
||||
target = "frigate"
|
||||
}
|
||||
|
||||
target axcl {
|
||||
dockerfile = "docker/axcl/Dockerfile"
|
||||
contexts = {
|
||||
frigate = "target:frigate",
|
||||
}
|
||||
platforms = ["linux/amd64", "linux/arm64"]
|
||||
}
|
||||
15
docker/axcl/axcl.mk
Normal file
15
docker/axcl/axcl.mk
Normal file
@ -0,0 +1,15 @@
|
||||
BOARDS += axcl
|
||||
|
||||
local-axcl: version
|
||||
docker buildx bake --file=docker/axcl/axcl.hcl axcl \
|
||||
--set axcl.tags=frigate:latest-axcl \
|
||||
--load
|
||||
|
||||
build-axcl: version
|
||||
docker buildx bake --file=docker/axcl/axcl.hcl axcl \
|
||||
--set axcl.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-axcl
|
||||
|
||||
push-axcl: build-axcl
|
||||
docker buildx bake --file=docker/axcl/axcl.hcl axcl \
|
||||
--set axcl.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-axcl \
|
||||
--push
|
||||
83
docker/axcl/user_installation.sh
Executable file
83
docker/axcl/user_installation.sh
Executable file
@ -0,0 +1,83 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Update package list and install dependencies
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential cmake git wget pciutils kmod udev
|
||||
|
||||
# Check if gcc-12 is needed
|
||||
current_gcc_version=$(gcc --version | head -n1 | awk '{print $NF}')
|
||||
gcc_major_version=$(echo $current_gcc_version | cut -d'.' -f1)
|
||||
|
||||
if [[ $gcc_major_version -lt 12 ]]; then
|
||||
echo "Current GCC version ($current_gcc_version) is lower than 12, installing gcc-12..."
|
||||
sudo apt-get install -y gcc-12
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12
|
||||
echo "GCC-12 installed and set as default"
|
||||
else
|
||||
echo "Current GCC version ($current_gcc_version) is sufficient, skipping GCC installation"
|
||||
fi
|
||||
|
||||
# Determine architecture
|
||||
arch=$(uname -m)
|
||||
download_url=""
|
||||
|
||||
if [[ $arch == "x86_64" ]]; then
|
||||
download_url="https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_x86_64_V3.6.5_20250908154509_NO4973.deb"
|
||||
deb_file="axcl_host_x86_64_V3.6.5_20250908154509_NO4973.deb"
|
||||
elif [[ $arch == "aarch64" ]]; then
|
||||
download_url="https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb"
|
||||
deb_file="axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb"
|
||||
else
|
||||
echo "Unsupported architecture: $arch"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Download AXCL driver
|
||||
echo "Downloading AXCL driver for $arch..."
|
||||
wget "$download_url" -O "$deb_file"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed to download AXCL driver"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Install AXCL driver
|
||||
echo "Installing AXCL driver..."
|
||||
sudo dpkg -i "$deb_file"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed to install AXCL driver, attempting to fix dependencies..."
|
||||
sudo apt-get install -f -y
|
||||
sudo dpkg -i "$deb_file"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "AXCL driver installation failed"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
# Update environment
|
||||
echo "Updating environment..."
|
||||
source /etc/profile
|
||||
|
||||
# Verify installation
|
||||
echo "Verifying AXCL installation..."
|
||||
if command -v axcl-smi &> /dev/null; then
|
||||
echo "AXCL driver detected, checking AI accelerator status..."
|
||||
|
||||
axcl_output=$(axcl-smi 2>&1)
|
||||
axcl_exit_code=$?
|
||||
|
||||
echo "$axcl_output"
|
||||
|
||||
if [ $axcl_exit_code -eq 0 ]; then
|
||||
echo "AXCL driver installation completed successfully!"
|
||||
else
|
||||
echo "AXCL driver installed but no AI accelerator detected or communication failed."
|
||||
echo "Please check if the AI accelerator is properly connected and powered on."
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
echo "axcl-smi command not found. AXCL driver installation may have failed."
|
||||
exit 1
|
||||
fi
|
||||
@ -3,7 +3,6 @@
|
||||
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
ARG ROCM=1
|
||||
ARG AMDGPU=gfx900
|
||||
ARG HSA_OVERRIDE_GFX_VERSION
|
||||
ARG HSA_OVERRIDE
|
||||
|
||||
@ -11,7 +10,6 @@ ARG HSA_OVERRIDE
|
||||
FROM wget AS rocm
|
||||
|
||||
ARG ROCM
|
||||
ARG AMDGPU
|
||||
|
||||
RUN apt update -qq && \
|
||||
apt install -y wget gpg && \
|
||||
@ -36,7 +34,10 @@ FROM deps AS deps-prelim
|
||||
COPY docker/rocm/debian-backports.sources /etc/apt/sources.list.d/debian-backports.sources
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libnuma1 && \
|
||||
apt-get install -qq -y -t bookworm-backports mesa-va-drivers mesa-vulkan-drivers
|
||||
apt-get install -qq -y -t bookworm-backports mesa-va-drivers mesa-vulkan-drivers && \
|
||||
# Install C++ standard library headers for HIPRTC kernel compilation fallback
|
||||
apt-get install -qq -y libstdc++-12-dev && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
WORKDIR /opt/frigate
|
||||
COPY --from=rootfs / /
|
||||
@ -54,12 +55,14 @@ RUN pip3 uninstall -y onnxruntime \
|
||||
FROM scratch AS rocm-dist
|
||||
|
||||
ARG ROCM
|
||||
ARG AMDGPU
|
||||
|
||||
COPY --from=rocm /opt/rocm-$ROCM/bin/rocminfo /opt/rocm-$ROCM/bin/migraphx-driver /opt/rocm-$ROCM/bin/
|
||||
COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*$AMDGPU* /opt/rocm-$ROCM/share/miopen/db/
|
||||
COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*gfx908* /opt/rocm-$ROCM/share/miopen/db/
|
||||
COPY --from=rocm /opt/rocm-$ROCM/lib/rocblas/library/*$AMDGPU* /opt/rocm-$ROCM/lib/rocblas/library/
|
||||
# Copy MIOpen database files for gfx10xx and gfx11xx only (RDNA2/RDNA3)
|
||||
COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*gfx10* /opt/rocm-$ROCM/share/miopen/db/
|
||||
COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*gfx11* /opt/rocm-$ROCM/share/miopen/db/
|
||||
# Copy rocBLAS library files for gfx10xx and gfx11xx only
|
||||
COPY --from=rocm /opt/rocm-$ROCM/lib/rocblas/library/*gfx10* /opt/rocm-$ROCM/lib/rocblas/library/
|
||||
COPY --from=rocm /opt/rocm-$ROCM/lib/rocblas/library/*gfx11* /opt/rocm-$ROCM/lib/rocblas/library/
|
||||
COPY --from=rocm /opt/rocm-dist/ /
|
||||
|
||||
#######################################################################
|
||||
|
||||
@ -1,6 +1,3 @@
|
||||
variable "AMDGPU" {
|
||||
default = "gfx900"
|
||||
}
|
||||
variable "ROCM" {
|
||||
default = "7.1.1"
|
||||
}
|
||||
@ -38,7 +35,6 @@ target rocm {
|
||||
}
|
||||
platforms = ["linux/amd64"]
|
||||
args = {
|
||||
AMDGPU = AMDGPU,
|
||||
ROCM = ROCM,
|
||||
HSA_OVERRIDE_GFX_VERSION = HSA_OVERRIDE_GFX_VERSION,
|
||||
HSA_OVERRIDE = HSA_OVERRIDE
|
||||
|
||||
@ -1,53 +1,15 @@
|
||||
BOARDS += rocm
|
||||
|
||||
# AMD/ROCm is chunky so we build couple of smaller images for specific chipsets
|
||||
ROCM_CHIPSETS:=gfx900:9.0.0 gfx1030:10.3.0 gfx1100:11.0.0
|
||||
|
||||
local-rocm: version
|
||||
$(foreach chipset,$(ROCM_CHIPSETS), \
|
||||
AMDGPU=$(word 1,$(subst :, ,$(chipset))) \
|
||||
HSA_OVERRIDE_GFX_VERSION=$(word 2,$(subst :, ,$(chipset))) \
|
||||
HSA_OVERRIDE=1 \
|
||||
docker buildx bake --file=docker/rocm/rocm.hcl rocm \
|
||||
--set rocm.tags=frigate:latest-rocm-$(word 1,$(subst :, ,$(chipset))) \
|
||||
--load \
|
||||
&&) true
|
||||
|
||||
unset HSA_OVERRIDE_GFX_VERSION && \
|
||||
HSA_OVERRIDE=0 \
|
||||
AMDGPU=gfx \
|
||||
docker buildx bake --file=docker/rocm/rocm.hcl rocm \
|
||||
--set rocm.tags=frigate:latest-rocm \
|
||||
--load
|
||||
|
||||
build-rocm: version
|
||||
$(foreach chipset,$(ROCM_CHIPSETS), \
|
||||
AMDGPU=$(word 1,$(subst :, ,$(chipset))) \
|
||||
HSA_OVERRIDE_GFX_VERSION=$(word 2,$(subst :, ,$(chipset))) \
|
||||
HSA_OVERRIDE=1 \
|
||||
docker buildx bake --file=docker/rocm/rocm.hcl rocm \
|
||||
--set rocm.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rocm-$(chipset) \
|
||||
&&) true
|
||||
|
||||
unset HSA_OVERRIDE_GFX_VERSION && \
|
||||
HSA_OVERRIDE=0 \
|
||||
AMDGPU=gfx \
|
||||
docker buildx bake --file=docker/rocm/rocm.hcl rocm \
|
||||
--set rocm.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rocm
|
||||
|
||||
push-rocm: build-rocm
|
||||
$(foreach chipset,$(ROCM_CHIPSETS), \
|
||||
AMDGPU=$(word 1,$(subst :, ,$(chipset))) \
|
||||
HSA_OVERRIDE_GFX_VERSION=$(word 2,$(subst :, ,$(chipset))) \
|
||||
HSA_OVERRIDE=1 \
|
||||
docker buildx bake --file=docker/rocm/rocm.hcl rocm \
|
||||
--set rocm.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rocm-$(chipset) \
|
||||
--push \
|
||||
&&) true
|
||||
|
||||
unset HSA_OVERRIDE_GFX_VERSION && \
|
||||
HSA_OVERRIDE=0 \
|
||||
AMDGPU=gfx \
|
||||
docker buildx bake --file=docker/rocm/rocm.hcl rocm \
|
||||
--set rocm.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rocm \
|
||||
--push
|
||||
|
||||
@ -13,7 +13,7 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
|
||||
**Most Hardware**
|
||||
|
||||
- [Coral EdgeTPU](#edge-tpu-detector): The Google Coral EdgeTPU is available in USB and m.2 format allowing for a wide range of compatibility with devices.
|
||||
- [Coral EdgeTPU](#edge-tpu-detector): The Google Coral EdgeTPU is available in USB, Mini PCIe, and m.2 formats allowing for a wide range of compatibility with devices.
|
||||
- [Hailo](#hailo-8): The Hailo8 and Hailo8L AI Acceleration module is available in m.2 format with a HAT for RPi devices, offering a wide range of compatibility with devices.
|
||||
- <CommunityBadge /> [MemryX](#memryx-mx3): The MX3 Acceleration module is available in m.2 format, offering broad compatibility across various platforms.
|
||||
- <CommunityBadge /> [DeGirum](#degirum): Service for using hardware devices in the cloud or locally. Hardware and models provided on the cloud on [their website](https://hub.degirum.com).
|
||||
@ -49,6 +49,11 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
|
||||
- [Synaptics](#synaptics): synap models can run on Synaptics devices(e.g astra machina) with included NPUs.
|
||||
|
||||
**AXERA** <CommunityBadge />
|
||||
|
||||
- [AXEngine](#axera): axmodels can run on AXERA AI acceleration.
|
||||
|
||||
|
||||
**For Testing**
|
||||
|
||||
- [CPU Detector (not recommended for actual use](#cpu-detector-not-recommended): Use a CPU to run tflite model, this is not recommended and in most cases OpenVINO can be used in CPU mode with better results.
|
||||
@ -69,12 +74,10 @@ Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `hailo8
|
||||
|
||||
## Edge TPU Detector
|
||||
|
||||
The Edge TPU detector type runs a TensorFlow Lite model utilizing the Google Coral delegate for hardware acceleration. To configure an Edge TPU detector, set the `"type"` attribute to `"edgetpu"`.
|
||||
The Edge TPU detector type runs TensorFlow Lite models utilizing the Google Coral delegate for hardware acceleration. To configure an Edge TPU detector, set the `"type"` attribute to `"edgetpu"`.
|
||||
|
||||
The Edge TPU device can be specified using the `"device"` attribute according to the [Documentation for the TensorFlow Lite Python API](https://coral.ai/docs/edgetpu/multiple-edgetpu/#using-the-tensorflow-lite-python-api). If not set, the delegate will use the first device it finds.
|
||||
|
||||
A TensorFlow Lite model is provided in the container at `/edgetpu_model.tflite` and is used by this detector type by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`.
|
||||
|
||||
:::tip
|
||||
|
||||
See [common Edge TPU troubleshooting steps](/troubleshooting/edgetpu) if the Edge TPU is not detected.
|
||||
@ -146,6 +149,52 @@ detectors:
|
||||
device: pci
|
||||
```
|
||||
|
||||
### EdgeTPU Supported Models
|
||||
|
||||
| Model | Notes |
|
||||
| ------------------------------------- | ------------------------------------------- |
|
||||
| [MobileNet v2](#ssdlite-mobilenet-v2) | Default model |
|
||||
| [YOLOv9](#yolo-v9) | More accurate but slower than default model |
|
||||
|
||||
#### SSDLite MobileNet v2
|
||||
|
||||
A TensorFlow Lite model is provided in the container at `/edgetpu_model.tflite` and is used by this detector type by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`.
|
||||
|
||||
A Tensorflow Lite is provided in the container at `/openvino-model/ssdlite_mobilenet_v2.xml` and is used by this detector type by default. The model comes from Intel's Open Model Zoo [SSDLite MobileNet V2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) and is converted to an INT8 precision model.
|
||||
|
||||
#### YOLO v9
|
||||
|
||||
[YOLOv9](https://github.com/dbro/frigate-detector-edgetpu-yolo9/releases/download/v1.0/yolov9-s-relu6-best_320_int8_edgetpu.tflite) models that are compiled for Tensorflow Lite and properly quantized are supported, but not included by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`. Note that the model may require a custom label file (eg. [use this 17 label file](https://raw.githubusercontent.com/dbro/frigate-detector-edgetpu-yolo9/refs/heads/main/labels-coco17.txt) for the model linked above.)
|
||||
|
||||
<details>
|
||||
<summary>YOLOv9 Setup & Config</summary>
|
||||
|
||||
:::warning
|
||||
|
||||
If you are using a Frigate+ YOLOv9 model, you should not define any of the below `model` parameters in your config except for `path`. See [the Frigate+ model docs](/plus/first_model#step-3-set-your-model-id-in-the-config) for more information on setting up your model.
|
||||
|
||||
:::
|
||||
|
||||
After placing the downloaded files for the tflite model and labels in your config folder, you can use the following configuration:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
coral:
|
||||
type: edgetpu
|
||||
device: usb
|
||||
|
||||
model:
|
||||
model_type: yolo-generic
|
||||
width: 320 # <--- should match the imgsize of the model, typically 320
|
||||
height: 320 # <--- should match the imgsize of the model, typically 320
|
||||
path: /config/model_cache/yolov9-s-relu6-best_320_int8_edgetpu.tflite
|
||||
labelmap_path: /labelmap/labels-coco-17.txt
|
||||
```
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 17 objects.
|
||||
|
||||
</details>
|
||||
|
||||
---
|
||||
|
||||
## Hailo-8
|
||||
@ -1438,6 +1487,41 @@ model:
|
||||
input_pixel_format: rgb/bgr # look at the model.json to figure out which to put here
|
||||
```
|
||||
|
||||
## AXERA
|
||||
|
||||
Hardware accelerated object detection is supported on the following SoCs:
|
||||
|
||||
- AX650N
|
||||
- AX8850N
|
||||
|
||||
This implementation uses the [AXera Pulsar2 Toolchain](https://huggingface.co/AXERA-TECH/Pulsar2).
|
||||
|
||||
See the [installation docs](../frigate/installation.md#axera) for information on configuring the AXEngine hardware.
|
||||
|
||||
### Configuration
|
||||
|
||||
When configuring the AXEngine detector, you have to specify the model name.
|
||||
|
||||
#### yolov9
|
||||
|
||||
A yolov9 model is provided in the container at /axmodels and is used by this detector type by default.
|
||||
|
||||
Use the model configuration shown below when using the axengine detector with the default axmodel:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
axengine:
|
||||
type: axengine
|
||||
|
||||
model:
|
||||
path: frigate-yolov9-tiny
|
||||
model_type: yolo-generic
|
||||
width: 320
|
||||
height: 320
|
||||
tensor_format: bgr
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
# Models
|
||||
|
||||
Some model types are not included in Frigate by default.
|
||||
|
||||
@ -104,6 +104,10 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
|
||||
- [Synaptics](#synaptics): synap models can run on Synaptics devices(e.g astra machina) with included NPUs to provide efficient object detection.
|
||||
|
||||
**AXERA** <CommunityBadge />
|
||||
|
||||
- [AXEngine](#axera): axera models can run on AXERA NPUs via AXEngine, delivering highly efficient object detection.
|
||||
|
||||
:::
|
||||
|
||||
### Hailo-8
|
||||
@ -287,6 +291,14 @@ The inference time of a rk3588 with all 3 cores enabled is typically 25-30 ms fo
|
||||
| ssd mobilenet | ~ 25 ms |
|
||||
| yolov5m | ~ 118 ms |
|
||||
|
||||
### AXERA
|
||||
|
||||
- **AXEngine** Default model is **yolov9**
|
||||
|
||||
| Name | AXERA AX650N/AX8850N Inference Time |
|
||||
| ---------------- | ----------------------------------- |
|
||||
| yolov9-tiny | ~ 4 ms |
|
||||
|
||||
## What does Frigate use the CPU for and what does it use a detector for? (ELI5 Version)
|
||||
|
||||
This is taken from a [user question on reddit](https://www.reddit.com/r/homeassistant/comments/q8mgau/comment/hgqbxh5/?utm_source=share&utm_medium=web2x&context=3). Modified slightly for clarity.
|
||||
|
||||
@ -287,6 +287,42 @@ or add these options to your `docker run` command:
|
||||
|
||||
Next, you should configure [hardware object detection](/configuration/object_detectors#synaptics) and [hardware video processing](/configuration/hardware_acceleration_video#synaptics).
|
||||
|
||||
### AXERA
|
||||
|
||||
<details>
|
||||
<summary>AXERA accelerators</summary>
|
||||
AXERA accelerators are available in an M.2 form factor, compatible with both Raspberry Pi and Orange Pi. This form factor has also been successfully tested on x86 platforms, making it a versatile choice for various computing environments.
|
||||
|
||||
#### Installation
|
||||
|
||||
Using AXERA accelerators requires the installation of the AXCL driver. We provide a convenient Linux script to complete this installation.
|
||||
|
||||
Follow these steps for installation:
|
||||
|
||||
1. Copy or download [this script](https://github.com/ivanshi1108/assets/releases/download/v0.16.2/user_installation.sh).
|
||||
2. Ensure it has execution permissions with `sudo chmod +x user_installation.sh`
|
||||
3. Run the script with `./user_installation.sh`
|
||||
|
||||
#### Setup
|
||||
|
||||
To set up Frigate, follow the default installation instructions, for example: `ghcr.io/blakeblackshear/frigate:stable`
|
||||
|
||||
Next, grant Docker permissions to access your hardware by adding the following lines to your `docker-compose.yml` file:
|
||||
|
||||
```yaml
|
||||
devices:
|
||||
- /dev/axcl_host
|
||||
- /dev/ax_mmb_dev
|
||||
- /dev/msg_userdev
|
||||
```
|
||||
|
||||
If you are using `docker run`, add this option to your command `--device /dev/axcl_host --device /dev/ax_mmb_dev --device /dev/msg_userdev`
|
||||
|
||||
#### Configuration
|
||||
|
||||
Finally, configure [hardware object detection](/configuration/object_detectors#axera) to complete the setup.
|
||||
</details>
|
||||
|
||||
## Docker
|
||||
|
||||
Running through Docker with Docker Compose is the recommended install method.
|
||||
|
||||
86
frigate/detectors/plugins/axengine.py
Normal file
86
frigate/detectors/plugins/axengine.py
Normal file
@ -0,0 +1,86 @@
|
||||
import logging
|
||||
import os.path
|
||||
import re
|
||||
import urllib.request
|
||||
from typing import Literal
|
||||
|
||||
import axengine as axe
|
||||
|
||||
from frigate.const import MODEL_CACHE_DIR
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
||||
from frigate.util.model import post_process_yolo
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
DETECTOR_KEY = "axengine"
|
||||
|
||||
supported_models = {
|
||||
ModelTypeEnum.yologeneric: "frigate-yolov9-.*$",
|
||||
}
|
||||
|
||||
model_cache_dir = os.path.join(MODEL_CACHE_DIR, "axengine_cache/")
|
||||
|
||||
|
||||
class AxengineDetectorConfig(BaseDetectorConfig):
|
||||
type: Literal[DETECTOR_KEY]
|
||||
|
||||
|
||||
class Axengine(DetectionApi):
|
||||
type_key = DETECTOR_KEY
|
||||
|
||||
def __init__(self, config: AxengineDetectorConfig):
|
||||
logger.info("__init__ axengine")
|
||||
super().__init__(config)
|
||||
self.height = config.model.height
|
||||
self.width = config.model.width
|
||||
model_path = config.model.path or "frigate-yolov9-tiny"
|
||||
model_props = self.parse_model_input(model_path)
|
||||
self.session = axe.InferenceSession(model_props["path"])
|
||||
|
||||
def __del__(self):
|
||||
pass
|
||||
|
||||
def parse_model_input(self, model_path):
|
||||
model_props = {}
|
||||
model_props["preset"] = True
|
||||
|
||||
model_matched = False
|
||||
|
||||
for model_type, pattern in supported_models.items():
|
||||
if re.match(pattern, model_path):
|
||||
model_matched = True
|
||||
model_props["model_type"] = model_type
|
||||
|
||||
if model_matched:
|
||||
model_props["filename"] = model_path + ".axmodel"
|
||||
model_props["path"] = model_cache_dir + model_props["filename"]
|
||||
|
||||
if not os.path.isfile(model_props["path"]):
|
||||
self.download_model(model_props["filename"])
|
||||
else:
|
||||
supported_models_str = ", ".join(model[1:-1] for model in supported_models)
|
||||
raise Exception(
|
||||
f"Model {model_path} is unsupported. Provide your own model or choose one of the following: {supported_models_str}"
|
||||
)
|
||||
return model_props
|
||||
|
||||
def download_model(self, filename):
|
||||
if not os.path.isdir(model_cache_dir):
|
||||
os.mkdir(model_cache_dir)
|
||||
|
||||
GITHUB_ENDPOINT = os.environ.get("GITHUB_ENDPOINT", "https://github.com")
|
||||
urllib.request.urlretrieve(
|
||||
f"{GITHUB_ENDPOINT}/ivanshi1108/assets/releases/download/v0.16.2/{filename}",
|
||||
model_cache_dir + filename,
|
||||
)
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
results = None
|
||||
results = self.session.run(None, {"images": tensor_input})
|
||||
if self.detector_config.model.model_type == ModelTypeEnum.yologeneric:
|
||||
return post_process_yolo(results, self.width, self.height)
|
||||
else:
|
||||
raise ValueError(
|
||||
f'Model type "{self.detector_config.model.model_type}" is currently not supported.'
|
||||
)
|
||||
@ -1,19 +1,20 @@
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from pydantic import Field
|
||||
from typing_extensions import Literal
|
||||
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
||||
|
||||
try:
|
||||
from tflite_runtime.interpreter import Interpreter, load_delegate
|
||||
except ModuleNotFoundError:
|
||||
from tensorflow.lite.python.interpreter import Interpreter, load_delegate
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
DETECTOR_KEY = "edgetpu"
|
||||
@ -26,6 +27,10 @@ class EdgeTpuDetectorConfig(BaseDetectorConfig):
|
||||
|
||||
class EdgeTpuTfl(DetectionApi):
|
||||
type_key = DETECTOR_KEY
|
||||
supported_models = [
|
||||
ModelTypeEnum.ssd,
|
||||
ModelTypeEnum.yologeneric,
|
||||
]
|
||||
|
||||
def __init__(self, detector_config: EdgeTpuDetectorConfig):
|
||||
device_config = {}
|
||||
@ -63,23 +68,281 @@ class EdgeTpuTfl(DetectionApi):
|
||||
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
self.model_width = detector_config.model.width
|
||||
self.model_height = detector_config.model.height
|
||||
|
||||
self.min_score = 0.4
|
||||
self.max_detections = 20
|
||||
|
||||
self.model_type = detector_config.model.model_type
|
||||
self.model_requires_int8 = self.tensor_input_details[0]["dtype"] == np.int8
|
||||
|
||||
if self.model_type == ModelTypeEnum.yologeneric:
|
||||
logger.debug("Using YOLO preprocessing/postprocessing")
|
||||
|
||||
if len(self.tensor_output_details) not in [2, 3]:
|
||||
logger.error(
|
||||
f"Invalid count of output tensors in YOLO model. Found {len(self.tensor_output_details)}, expecting 2 or 3."
|
||||
)
|
||||
raise
|
||||
|
||||
self.reg_max = 16 # = 64 dfl_channels // 4 # YOLO standard
|
||||
self.min_logit_value = np.log(
|
||||
self.min_score / (1 - self.min_score)
|
||||
) # for filtering
|
||||
self._generate_anchors_and_strides() # decode bounding box DFL
|
||||
self.project = np.arange(
|
||||
self.reg_max, dtype=np.float32
|
||||
) # for decoding bounding box DFL information
|
||||
|
||||
# Determine YOLO tensor indices and quantization scales for
|
||||
# boxes and class_scores the tensor ordering and names are
|
||||
# not reliable, so use tensor shape to detect which tensor
|
||||
# holds boxes or class scores.
|
||||
# The tensors have shapes (B, N, C)
|
||||
# where N is the number of candidates (=2100 for 320x320)
|
||||
# this may guess wrong if the number of classes is exactly 64
|
||||
output_boxes_index = None
|
||||
output_classes_index = None
|
||||
for i, x in enumerate(self.tensor_output_details):
|
||||
# the nominal index seems to start at 1 instead of 0
|
||||
if len(x["shape"]) == 3 and x["shape"][2] == 64:
|
||||
output_boxes_index = i
|
||||
elif len(x["shape"]) == 3 and x["shape"][2] > 1:
|
||||
# require the number of classes to be more than 1
|
||||
# to differentiate from (not used) max score tensor
|
||||
output_classes_index = i
|
||||
if output_boxes_index is None or output_classes_index is None:
|
||||
logger.warning("Unrecognized model output, unexpected tensor shapes.")
|
||||
output_classes_index = (
|
||||
0
|
||||
if (output_boxes_index is None or output_classes_index == 1)
|
||||
else 1
|
||||
) # 0 is default guess
|
||||
output_boxes_index = 1 if (output_boxes_index == 0) else 0
|
||||
|
||||
scores_details = self.tensor_output_details[output_classes_index]
|
||||
self.scores_tensor_index = scores_details["index"]
|
||||
self.scores_scale, self.scores_zero_point = scores_details["quantization"]
|
||||
# calculate the quantized version of the min_score
|
||||
self.min_score_quantized = int(
|
||||
(self.min_logit_value / self.scores_scale) + self.scores_zero_point
|
||||
)
|
||||
self.logit_shift_to_positive_values = (
|
||||
max(0, math.ceil((128 + self.scores_zero_point) * self.scores_scale))
|
||||
+ 1
|
||||
) # round up
|
||||
|
||||
boxes_details = self.tensor_output_details[output_boxes_index]
|
||||
self.boxes_tensor_index = boxes_details["index"]
|
||||
self.boxes_scale, self.boxes_zero_point = boxes_details["quantization"]
|
||||
|
||||
elif self.model_type == ModelTypeEnum.ssd:
|
||||
logger.debug("Using SSD preprocessing/postprocessing")
|
||||
|
||||
# SSD model indices (4 outputs: boxes, class_ids, scores, count)
|
||||
for x in self.tensor_output_details:
|
||||
if len(x["shape"]) == 3:
|
||||
self.output_boxes_index = x["index"]
|
||||
elif len(x["shape"]) == 1:
|
||||
self.output_count_index = x["index"]
|
||||
|
||||
self.output_class_ids_index = None
|
||||
self.output_class_scores_index = None
|
||||
|
||||
else:
|
||||
raise Exception(
|
||||
f"{self.model_type} is currently not supported for edgetpu. See the docs for more info on supported models."
|
||||
)
|
||||
|
||||
def _generate_anchors_and_strides(self):
|
||||
# for decoding the bounding box DFL information into xy coordinates
|
||||
all_anchors = []
|
||||
all_strides = []
|
||||
strides = (8, 16, 32) # YOLO's small, medium, large detection heads
|
||||
|
||||
for stride in strides:
|
||||
feat_h, feat_w = self.model_height // stride, self.model_width // stride
|
||||
|
||||
grid_y, grid_x = np.meshgrid(
|
||||
np.arange(feat_h, dtype=np.float32),
|
||||
np.arange(feat_w, dtype=np.float32),
|
||||
indexing="ij",
|
||||
)
|
||||
|
||||
grid_coords = np.stack((grid_x.flatten(), grid_y.flatten()), axis=1)
|
||||
anchor_points = grid_coords + 0.5
|
||||
|
||||
all_anchors.append(anchor_points)
|
||||
all_strides.append(np.full((feat_h * feat_w, 1), stride, dtype=np.float32))
|
||||
|
||||
self.anchors = np.concatenate(all_anchors, axis=0)
|
||||
self.anchor_strides = np.concatenate(all_strides, axis=0)
|
||||
|
||||
def determine_indexes_for_non_yolo_models(self):
|
||||
"""Legacy method for SSD models."""
|
||||
if (
|
||||
self.output_class_ids_index is None
|
||||
or self.output_class_scores_index is None
|
||||
):
|
||||
for i in range(4):
|
||||
index = self.tensor_output_details[i]["index"]
|
||||
if (
|
||||
index != self.output_boxes_index
|
||||
and index != self.output_count_index
|
||||
):
|
||||
if (
|
||||
np.mod(np.float32(self.interpreter.tensor(index)()[0][0]), 1)
|
||||
== 0.0
|
||||
):
|
||||
self.output_class_ids_index = index
|
||||
else:
|
||||
self.output_scores_index = index
|
||||
|
||||
def pre_process(self, tensor_input):
|
||||
if self.model_requires_int8:
|
||||
tensor_input = np.bitwise_xor(tensor_input, 128).view(
|
||||
np.int8
|
||||
) # shift by -128
|
||||
return tensor_input
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
tensor_input = self.pre_process(tensor_input)
|
||||
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
||||
self.interpreter.invoke()
|
||||
|
||||
if self.model_type == ModelTypeEnum.yologeneric:
|
||||
# Multi-tensor YOLO model with (non-standard B(H*W)C output format).
|
||||
# (the comments indicate the shape of tensors,
|
||||
# using "2100" as the anchor count (for image size of 320x320),
|
||||
# "NC" as number of classes,
|
||||
# "N" as the count that survive after min-score filtering)
|
||||
# TENSOR A) class scores (1, 2100, NC) with logit values
|
||||
# TENSOR B) box coordinates (1, 2100, 64) encoded as dfl scores
|
||||
# Recommend that the model clamp the logit values in tensor (A)
|
||||
# to the range [-4,+4] to preserve precision from [2%,98%]
|
||||
# and because NMS requires the min_score parameter to be >= 0
|
||||
|
||||
# don't dequantize scores data yet, wait until the low-confidence
|
||||
# candidates are filtered out from the overall result set.
|
||||
# This reduces the work and makes post-processing faster.
|
||||
# this method works with raw quantized numbers when possible,
|
||||
# which relies on the value of the scale factor to be >0.
|
||||
# This speeds up max and argmax operations.
|
||||
# Get max confidence for each detection and create the mask
|
||||
detections = np.zeros(
|
||||
(self.max_detections, 6), np.float32
|
||||
) # initialize zero results
|
||||
scores_output_quantized = self.interpreter.get_tensor(
|
||||
self.scores_tensor_index
|
||||
)[0] # (2100, NC)
|
||||
max_scores_quantized = np.max(scores_output_quantized, axis=1) # (2100,)
|
||||
mask = max_scores_quantized >= self.min_score_quantized # (2100,)
|
||||
|
||||
if not np.any(mask):
|
||||
return detections # empty results
|
||||
|
||||
max_scores_filtered_shiftedpositive = (
|
||||
(max_scores_quantized[mask] - self.scores_zero_point)
|
||||
* self.scores_scale
|
||||
) + self.logit_shift_to_positive_values # (N,1) shifted logit values
|
||||
scores_output_quantized_filtered = scores_output_quantized[mask]
|
||||
|
||||
# dequantize boxes. NMS needs them to be in float format
|
||||
# remove candidates with probabilities < threshold
|
||||
boxes_output_quantized_filtered = (
|
||||
self.interpreter.get_tensor(self.boxes_tensor_index)[0]
|
||||
)[mask] # (N, 64)
|
||||
boxes_output_filtered = (
|
||||
boxes_output_quantized_filtered.astype(np.float32)
|
||||
- self.boxes_zero_point
|
||||
) * self.boxes_scale
|
||||
|
||||
# 2. Decode DFL to distances (ltrb)
|
||||
dfl_distributions = boxes_output_filtered.reshape(
|
||||
-1, 4, self.reg_max
|
||||
) # (N, 4, 16)
|
||||
|
||||
# Softmax over the 16 bins
|
||||
dfl_max = np.max(dfl_distributions, axis=2, keepdims=True)
|
||||
dfl_exp = np.exp(dfl_distributions - dfl_max)
|
||||
dfl_probs = dfl_exp / np.sum(dfl_exp, axis=2, keepdims=True) # (N, 4, 16)
|
||||
|
||||
# Weighted sum: (N, 4, 16) * (16,) -> (N, 4)
|
||||
distances = np.einsum("pcr,r->pc", dfl_probs, self.project)
|
||||
|
||||
# Calculate box corners in pixel coordinates
|
||||
anchors_filtered = self.anchors[mask]
|
||||
anchor_strides_filtered = self.anchor_strides[mask]
|
||||
x1y1 = (
|
||||
anchors_filtered - distances[:, [0, 1]]
|
||||
) * anchor_strides_filtered # (N, 2)
|
||||
x2y2 = (
|
||||
anchors_filtered + distances[:, [2, 3]]
|
||||
) * anchor_strides_filtered # (N, 2)
|
||||
boxes_filtered_decoded = np.concatenate((x1y1, x2y2), axis=-1) # (N, 4)
|
||||
|
||||
# 9. Apply NMS. Use logit scores here to defer sigmoid()
|
||||
# until after filtering out redundant boxes
|
||||
# Shift the logit scores to be non-negative (required by cv2)
|
||||
indices = cv2.dnn.NMSBoxes(
|
||||
bboxes=boxes_filtered_decoded,
|
||||
scores=max_scores_filtered_shiftedpositive,
|
||||
score_threshold=(
|
||||
self.min_logit_value + self.logit_shift_to_positive_values
|
||||
),
|
||||
nms_threshold=0.4, # should this be a model config setting?
|
||||
)
|
||||
num_detections = len(indices)
|
||||
if num_detections == 0:
|
||||
return detections # empty results
|
||||
|
||||
nms_indices = np.array(indices, dtype=np.int32).ravel() # or .flatten()
|
||||
if num_detections > self.max_detections:
|
||||
nms_indices = nms_indices[: self.max_detections]
|
||||
num_detections = self.max_detections
|
||||
kept_logits_quantized = scores_output_quantized_filtered[nms_indices]
|
||||
class_ids_post_nms = np.argmax(kept_logits_quantized, axis=1)
|
||||
|
||||
# Extract the final boxes and scores using fancy indexing
|
||||
final_boxes = boxes_filtered_decoded[nms_indices]
|
||||
final_scores_logits = (
|
||||
max_scores_filtered_shiftedpositive[nms_indices]
|
||||
- self.logit_shift_to_positive_values
|
||||
) # Unshifted logits
|
||||
|
||||
# Detections array format: [class_id, score, ymin, xmin, ymax, xmax]
|
||||
detections[:num_detections, 0] = class_ids_post_nms
|
||||
detections[:num_detections, 1] = 1.0 / (
|
||||
1.0 + np.exp(-final_scores_logits)
|
||||
) # sigmoid
|
||||
detections[:num_detections, 2] = final_boxes[:, 1] / self.model_height
|
||||
detections[:num_detections, 3] = final_boxes[:, 0] / self.model_width
|
||||
detections[:num_detections, 4] = final_boxes[:, 3] / self.model_height
|
||||
detections[:num_detections, 5] = final_boxes[:, 2] / self.model_width
|
||||
return detections
|
||||
|
||||
elif self.model_type == ModelTypeEnum.ssd:
|
||||
self.determine_indexes_for_non_yolo_models()
|
||||
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
|
||||
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
|
||||
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
|
||||
class_ids = self.interpreter.tensor(
|
||||
self.tensor_output_details[1]["index"]
|
||||
)()[0]
|
||||
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[
|
||||
0
|
||||
]
|
||||
count = int(
|
||||
self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
|
||||
)
|
||||
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
detections = np.zeros((self.max_detections, 6), np.float32)
|
||||
|
||||
for i in range(count):
|
||||
if scores[i] < 0.4 or i == 20:
|
||||
if scores[i] < self.min_score:
|
||||
break
|
||||
if i == self.max_detections:
|
||||
logger.debug(f"Too many detections ({count})!")
|
||||
break
|
||||
detections[i] = [
|
||||
class_ids[i],
|
||||
@ -91,3 +354,8 @@ class EdgeTpuTfl(DetectionApi):
|
||||
]
|
||||
|
||||
return detections
|
||||
|
||||
else:
|
||||
raise Exception(
|
||||
f"{self.model_type} is currently not supported for edgetpu. See the docs for more info on supported models."
|
||||
)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user