mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-12-06 13:34:13 +03:00
Compare commits
15 Commits
8ac228e1a2
...
1aea5b695d
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1aea5b695d | ||
|
|
9d4aac2b8e | ||
|
|
aa09132dfd | ||
|
|
acb17a7b50 | ||
|
|
7933a83a42 | ||
|
|
2eef58aa1d | ||
|
|
6659b7cb0f | ||
|
|
f134796913 | ||
|
|
b4abbd7d3b | ||
|
|
438df7d484 | ||
|
|
e27a94ae0b | ||
|
|
1dee548dbc | ||
|
|
91e17e12b7 | ||
|
|
bb45483e9e | ||
|
|
7b4eaf2d10 |
28
.github/workflows/ci.yml
vendored
28
.github/workflows/ci.yml
vendored
@ -15,7 +15,7 @@ concurrency:
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: 3.9
|
||||
PYTHON_VERSION: 3.11
|
||||
|
||||
jobs:
|
||||
amd64_build:
|
||||
@ -225,3 +225,29 @@ jobs:
|
||||
sources: |
|
||||
ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}:${{ env.SHORT_SHA }}-amd64
|
||||
ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}:${{ env.SHORT_SHA }}-rpi
|
||||
axera_build:
|
||||
runs-on: ubuntu-22.04
|
||||
name: AXERA Build
|
||||
needs:
|
||||
- amd64_build
|
||||
- arm64_build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v5
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
with:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Build and push Axera build
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
source: .
|
||||
push: true
|
||||
targets: axcl
|
||||
files: docker/axcl/axcl.hcl
|
||||
set: |
|
||||
axcl.tags=${{ steps.setup.outputs.image-name }}-axcl
|
||||
*.cache-from=type=gha
|
||||
51
README_CN.md
51
README_CN.md
@ -1,28 +1,31 @@
|
||||
<p align="center">
|
||||
<img align="center" alt="logo" src="docs/static/img/frigate.png">
|
||||
<img align="center" alt="logo" src="docs/static/img/branding/frigate.png">
|
||||
</p>
|
||||
|
||||
# Frigate - 一个具有实时目标检测的本地NVR
|
||||
# Frigate NVR™ - 一个具有实时目标检测的本地 NVR
|
||||
|
||||
[English](https://github.com/blakeblackshear/frigate) | \[简体中文\]
|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
|
||||
<a href="https://hosted.weblate.org/engage/frigate-nvr/-/zh_Hans/">
|
||||
<img src="https://hosted.weblate.org/widget/frigate-nvr/-/zh_Hans/svg-badge.svg" alt="翻译状态" />
|
||||
</a>
|
||||
|
||||
一个完整的本地网络视频录像机(NVR),专为[Home Assistant](https://www.home-assistant.io)设计,具备AI物体检测功能。使用OpenCV和TensorFlow在本地为IP摄像头执行实时物体检测。
|
||||
一个完整的本地网络视频录像机(NVR),专为[Home Assistant](https://www.home-assistant.io)设计,具备 AI 目标/物体检测功能。使用 OpenCV 和 TensorFlow 在本地为 IP 摄像头执行实时物体检测。
|
||||
|
||||
强烈推荐使用GPU或者AI加速器(例如[Google Coral加速器](https://coral.ai/products/) 或者 [Hailo](https://hailo.ai/))。它们的性能甚至超过目前的顶级CPU,并且可以以极低的耗电实现更优的性能。
|
||||
- 通过[自定义组件](https://github.com/blakeblackshear/frigate-hass-integration)与Home Assistant紧密集成
|
||||
- 设计上通过仅在必要时和必要地点寻找物体,最大限度地减少资源使用并最大化性能
|
||||
强烈推荐使用 GPU 或者 AI 加速器(例如[Google Coral 加速器](https://coral.ai/products/) 或者 [Hailo](https://hailo.ai/)等)。它们的运行效率远远高于现在的顶级 CPU,并且功耗也极低。
|
||||
|
||||
- 通过[自定义组件](https://github.com/blakeblackshear/frigate-hass-integration)与 Home Assistant 紧密集成
|
||||
- 设计上通过仅在必要时和必要地点寻找目标,最大限度地减少资源使用并最大化性能
|
||||
- 大量利用多进程处理,强调实时性而非处理每一帧
|
||||
- 使用非常低开销的运动检测来确定运行物体检测的位置
|
||||
- 使用TensorFlow进行物体检测,运行在单独的进程中以达到最大FPS
|
||||
- 通过MQTT进行通信,便于集成到其他系统中
|
||||
- 使用非常低开销的画面变动检测(也叫运动检测)来确定运行目标检测的位置
|
||||
- 使用 TensorFlow 进行目标检测,并运行在单独的进程中以达到最大 FPS
|
||||
- 通过 MQTT 进行通信,便于集成到其他系统中
|
||||
- 根据检测到的物体设置保留时间进行视频录制
|
||||
- 24/7全天候录制
|
||||
- 通过RTSP重新流传输以减少摄像头的连接数
|
||||
- 支持WebRTC和MSE,实现低延迟的实时观看
|
||||
- 24/7 全天候录制
|
||||
- 通过 RTSP 重新流传输以减少摄像头的连接数
|
||||
- 支持 WebRTC 和 MSE,实现低延迟的实时观看
|
||||
|
||||
## 社区中文翻译文档
|
||||
|
||||
@ -32,39 +35,55 @@
|
||||
|
||||
如果您想通过捐赠支持开发,请使用 [Github Sponsors](https://github.com/sponsors/blakeblackshear)。
|
||||
|
||||
## 协议
|
||||
|
||||
本项目采用 **MIT 许可证**授权。
|
||||
**代码部分**:本代码库中的源代码、配置文件和文档均遵循 [MIT 许可证](LICENSE)。您可以自由使用、修改和分发这些代码,但必须保留原始版权声明。
|
||||
|
||||
**商标部分**:“Frigate”名称、“Frigate NVR”品牌以及 Frigate 的 Logo 为 **Frigate LLC 的商标**,**不在** MIT 许可证覆盖范围内。
|
||||
有关品牌资产的规范使用详情,请参阅我们的[《商标政策》](TRADEMARK.md)。
|
||||
|
||||
## 截图
|
||||
|
||||
### 实时监控面板
|
||||
|
||||
<div>
|
||||
<img width="800" alt="实时监控面板" src="https://github.com/blakeblackshear/frigate/assets/569905/5e713cb9-9db5-41dc-947a-6937c3bc376e">
|
||||
</div>
|
||||
|
||||
### 简单的核查工作流程
|
||||
|
||||
<div>
|
||||
<img width="800" alt="简单的审查工作流程" src="https://github.com/blakeblackshear/frigate/assets/569905/6fed96e8-3b18-40e5-9ddc-31e6f3c9f2ff">
|
||||
</div>
|
||||
|
||||
### 多摄像头可按时间轴查看
|
||||
|
||||
<div>
|
||||
<img width="800" alt="多摄像头可按时间轴查看" src="https://github.com/blakeblackshear/frigate/assets/569905/d6788a15-0eeb-4427-a8d4-80b93cae3d74">
|
||||
</div>
|
||||
|
||||
### 内置遮罩和区域编辑器
|
||||
|
||||
<div>
|
||||
<img width="800" alt="内置遮罩和区域编辑器" src="https://github.com/blakeblackshear/frigate/assets/569905/d7885fc3-bfe6-452f-b7d0-d957cb3e31f5">
|
||||
</div>
|
||||
|
||||
|
||||
## 翻译
|
||||
|
||||
我们使用 [Weblate](https://hosted.weblate.org/projects/frigate-nvr/) 平台提供翻译支持,欢迎参与进来一起完善。
|
||||
|
||||
|
||||
## 非官方中文讨论社区
|
||||
欢迎加入中文讨论QQ群:[1043861059](https://qm.qq.com/q/7vQKsTmSz)
|
||||
|
||||
欢迎加入中文讨论 QQ 群:[1043861059](https://qm.qq.com/q/7vQKsTmSz)
|
||||
|
||||
Bilibili:https://space.bilibili.com/3546894915602564
|
||||
|
||||
|
||||
## 中文社区赞助商
|
||||
|
||||
[](https://edgeone.ai/zh?from=github)
|
||||
本项目 CDN 加速及安全防护由 Tencent EdgeOne 赞助
|
||||
|
||||
---
|
||||
|
||||
**Copyright © 2025 Frigate LLC.**
|
||||
|
||||
55
docker/axcl/Dockerfile
Normal file
55
docker/axcl/Dockerfile
Normal file
@ -0,0 +1,55 @@
|
||||
# syntax=docker/dockerfile:1.6
|
||||
|
||||
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Globally set pip break-system-packages option to avoid having to specify it every time
|
||||
ARG PIP_BREAK_SYSTEM_PACKAGES=1
|
||||
|
||||
|
||||
FROM frigate AS frigate-axcl
|
||||
ARG TARGETARCH
|
||||
ARG PIP_BREAK_SYSTEM_PACKAGES
|
||||
|
||||
# Install axpyengine
|
||||
RUN wget https://github.com/AXERA-TECH/pyaxengine/releases/download/0.1.3.rc1/axengine-0.1.3-py3-none-any.whl -O /axengine-0.1.3-py3-none-any.whl
|
||||
RUN pip3 install -i https://mirrors.aliyun.com/pypi/simple/ /axengine-0.1.3-py3-none-any.whl \
|
||||
&& rm /axengine-0.1.3-py3-none-any.whl
|
||||
|
||||
# Install axcl
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
echo "Installing x86_64 version of axcl"; \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_x86_64_V3.6.5_20250908154509_NO4973.deb -O /axcl.deb; \
|
||||
else \
|
||||
echo "Installing aarch64 version of axcl"; \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb -O /axcl.deb; \
|
||||
fi
|
||||
|
||||
RUN mkdir /unpack_axcl && \
|
||||
dpkg-deb -x /axcl.deb /unpack_axcl && \
|
||||
cp -R /unpack_axcl/usr/bin/axcl /usr/bin/ && \
|
||||
cp -R /unpack_axcl/usr/lib/axcl /usr/lib/ && \
|
||||
rm -rf /unpack_axcl /axcl.deb
|
||||
|
||||
|
||||
# Install axcl ffmpeg
|
||||
RUN mkdir -p /usr/lib/ffmpeg/axcl
|
||||
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffmpeg-x64 -O /usr/lib/ffmpeg/axcl/ffmpeg && \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffprobe-x64 -O /usr/lib/ffmpeg/axcl/ffprobe; \
|
||||
else \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffmpeg-aarch64 -O /usr/lib/ffmpeg/axcl/ffmpeg && \
|
||||
wget https://github.com/ivanshi1108/assets/releases/download/v0.16.2/ffprobe-aarch64 -O /usr/lib/ffmpeg/axcl/ffprobe; \
|
||||
fi
|
||||
|
||||
RUN chmod +x /usr/lib/ffmpeg/axcl/ffmpeg /usr/lib/ffmpeg/axcl/ffprobe
|
||||
|
||||
# Set ldconfig path
|
||||
RUN echo "/usr/lib/axcl" > /etc/ld.so.conf.d/ax.conf
|
||||
|
||||
# Set env
|
||||
ENV PATH="$PATH:/usr/bin/axcl"
|
||||
ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/lib/axcl"
|
||||
|
||||
ENTRYPOINT ["sh", "-c", "ldconfig && exec /init"]
|
||||
13
docker/axcl/axcl.hcl
Normal file
13
docker/axcl/axcl.hcl
Normal file
@ -0,0 +1,13 @@
|
||||
target frigate {
|
||||
dockerfile = "docker/main/Dockerfile"
|
||||
platforms = ["linux/amd64", "linux/arm64"]
|
||||
target = "frigate"
|
||||
}
|
||||
|
||||
target axcl {
|
||||
dockerfile = "docker/axcl/Dockerfile"
|
||||
contexts = {
|
||||
frigate = "target:frigate",
|
||||
}
|
||||
platforms = ["linux/amd64", "linux/arm64"]
|
||||
}
|
||||
15
docker/axcl/axcl.mk
Normal file
15
docker/axcl/axcl.mk
Normal file
@ -0,0 +1,15 @@
|
||||
BOARDS += axcl
|
||||
|
||||
local-axcl: version
|
||||
docker buildx bake --file=docker/axcl/axcl.hcl axcl \
|
||||
--set axcl.tags=frigate:latest-axcl \
|
||||
--load
|
||||
|
||||
build-axcl: version
|
||||
docker buildx bake --file=docker/axcl/axcl.hcl axcl \
|
||||
--set axcl.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-axcl
|
||||
|
||||
push-axcl: build-axcl
|
||||
docker buildx bake --file=docker/axcl/axcl.hcl axcl \
|
||||
--set axcl.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-axcl \
|
||||
--push
|
||||
83
docker/axcl/user_installation.sh
Executable file
83
docker/axcl/user_installation.sh
Executable file
@ -0,0 +1,83 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Update package list and install dependencies
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential cmake git wget pciutils kmod udev
|
||||
|
||||
# Check if gcc-12 is needed
|
||||
current_gcc_version=$(gcc --version | head -n1 | awk '{print $NF}')
|
||||
gcc_major_version=$(echo $current_gcc_version | cut -d'.' -f1)
|
||||
|
||||
if [[ $gcc_major_version -lt 12 ]]; then
|
||||
echo "Current GCC version ($current_gcc_version) is lower than 12, installing gcc-12..."
|
||||
sudo apt-get install -y gcc-12
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12
|
||||
echo "GCC-12 installed and set as default"
|
||||
else
|
||||
echo "Current GCC version ($current_gcc_version) is sufficient, skipping GCC installation"
|
||||
fi
|
||||
|
||||
# Determine architecture
|
||||
arch=$(uname -m)
|
||||
download_url=""
|
||||
|
||||
if [[ $arch == "x86_64" ]]; then
|
||||
download_url="https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_x86_64_V3.6.5_20250908154509_NO4973.deb"
|
||||
deb_file="axcl_host_x86_64_V3.6.5_20250908154509_NO4973.deb"
|
||||
elif [[ $arch == "aarch64" ]]; then
|
||||
download_url="https://github.com/ivanshi1108/assets/releases/download/v0.16.2/axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb"
|
||||
deb_file="axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb"
|
||||
else
|
||||
echo "Unsupported architecture: $arch"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Download AXCL driver
|
||||
echo "Downloading AXCL driver for $arch..."
|
||||
wget "$download_url" -O "$deb_file"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed to download AXCL driver"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Install AXCL driver
|
||||
echo "Installing AXCL driver..."
|
||||
sudo dpkg -i "$deb_file"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed to install AXCL driver, attempting to fix dependencies..."
|
||||
sudo apt-get install -f -y
|
||||
sudo dpkg -i "$deb_file"
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "AXCL driver installation failed"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
# Update environment
|
||||
echo "Updating environment..."
|
||||
source /etc/profile
|
||||
|
||||
# Verify installation
|
||||
echo "Verifying AXCL installation..."
|
||||
if command -v axcl-smi &> /dev/null; then
|
||||
echo "AXCL driver detected, checking AI accelerator status..."
|
||||
|
||||
axcl_output=$(axcl-smi 2>&1)
|
||||
axcl_exit_code=$?
|
||||
|
||||
echo "$axcl_output"
|
||||
|
||||
if [ $axcl_exit_code -eq 0 ]; then
|
||||
echo "AXCL driver installation completed successfully!"
|
||||
else
|
||||
echo "AXCL driver installed but no AI accelerator detected or communication failed."
|
||||
echo "Please check if the AI accelerator is properly connected and powered on."
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
echo "axcl-smi command not found. AXCL driver installation may have failed."
|
||||
exit 1
|
||||
fi
|
||||
@ -15,7 +15,7 @@ ARG AMDGPU
|
||||
|
||||
RUN apt update -qq && \
|
||||
apt install -y wget gpg && \
|
||||
wget -O rocm.deb https://repo.radeon.com/amdgpu-install/7.1/ubuntu/jammy/amdgpu-install_7.1.70100-1_all.deb && \
|
||||
wget -O rocm.deb https://repo.radeon.com/amdgpu-install/7.1.1/ubuntu/jammy/amdgpu-install_7.1.1.70101-1_all.deb && \
|
||||
apt install -y ./rocm.deb && \
|
||||
apt update && \
|
||||
apt install -qq -y rocm
|
||||
|
||||
@ -2,7 +2,7 @@ variable "AMDGPU" {
|
||||
default = "gfx900"
|
||||
}
|
||||
variable "ROCM" {
|
||||
default = "7.1.0"
|
||||
default = "7.1.1"
|
||||
}
|
||||
variable "HSA_OVERRIDE_GFX_VERSION" {
|
||||
default = ""
|
||||
|
||||
@ -49,6 +49,11 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
|
||||
- [Synaptics](#synaptics): synap models can run on Synaptics devices(e.g astra machina) with included NPUs.
|
||||
|
||||
**AXERA** <CommunityBadge />
|
||||
|
||||
- [AXEngine](#axera): axmodels can run on AXERA AI acceleration.
|
||||
|
||||
|
||||
**For Testing**
|
||||
|
||||
- [CPU Detector (not recommended for actual use](#cpu-detector-not-recommended): Use a CPU to run tflite model, this is not recommended and in most cases OpenVINO can be used in CPU mode with better results.
|
||||
@ -1438,6 +1443,41 @@ model:
|
||||
input_pixel_format: rgb/bgr # look at the model.json to figure out which to put here
|
||||
```
|
||||
|
||||
## AXERA
|
||||
|
||||
Hardware accelerated object detection is supported on the following SoCs:
|
||||
|
||||
- AX650N
|
||||
- AX8850N
|
||||
|
||||
This implementation uses the [AXera Pulsar2 Toolchain](https://huggingface.co/AXERA-TECH/Pulsar2).
|
||||
|
||||
See the [installation docs](../frigate/installation.md#axera) for information on configuring the AXEngine hardware.
|
||||
|
||||
### Configuration
|
||||
|
||||
When configuring the AXEngine detector, you have to specify the model name.
|
||||
|
||||
#### yolov9
|
||||
|
||||
A yolov9 model is provided in the container at /axmodels and is used by this detector type by default.
|
||||
|
||||
Use the model configuration shown below when using the axengine detector with the default axmodel:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
axengine:
|
||||
type: axengine
|
||||
|
||||
model:
|
||||
path: frigate-yolov9-tiny
|
||||
model_type: yolo-generic
|
||||
width: 320
|
||||
height: 320
|
||||
tensor_format: bgr
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
# Models
|
||||
|
||||
Some model types are not included in Frigate by default.
|
||||
|
||||
@ -104,6 +104,10 @@ Frigate supports multiple different detectors that work on different types of ha
|
||||
|
||||
- [Synaptics](#synaptics): synap models can run on Synaptics devices(e.g astra machina) with included NPUs to provide efficient object detection.
|
||||
|
||||
**AXERA** <CommunityBadge />
|
||||
|
||||
- [AXEngine](#axera): axera models can run on AXERA NPUs via AXEngine, delivering highly efficient object detection.
|
||||
|
||||
:::
|
||||
|
||||
### Hailo-8
|
||||
@ -287,6 +291,14 @@ The inference time of a rk3588 with all 3 cores enabled is typically 25-30 ms fo
|
||||
| ssd mobilenet | ~ 25 ms |
|
||||
| yolov5m | ~ 118 ms |
|
||||
|
||||
### AXERA
|
||||
|
||||
- **AXEngine** Default model is **yolov9**
|
||||
|
||||
| Name | AXERA AX650N/AX8850N Inference Time |
|
||||
| ---------------- | ----------------------------------- |
|
||||
| yolov9-tiny | ~ 4 ms |
|
||||
|
||||
## What does Frigate use the CPU for and what does it use a detector for? (ELI5 Version)
|
||||
|
||||
This is taken from a [user question on reddit](https://www.reddit.com/r/homeassistant/comments/q8mgau/comment/hgqbxh5/?utm_source=share&utm_medium=web2x&context=3). Modified slightly for clarity.
|
||||
|
||||
@ -287,6 +287,42 @@ or add these options to your `docker run` command:
|
||||
|
||||
Next, you should configure [hardware object detection](/configuration/object_detectors#synaptics) and [hardware video processing](/configuration/hardware_acceleration_video#synaptics).
|
||||
|
||||
### AXERA
|
||||
|
||||
<details>
|
||||
<summary>AXERA accelerators</summary>
|
||||
AXERA accelerators are available in an M.2 form factor, compatible with both Raspberry Pi and Orange Pi. This form factor has also been successfully tested on x86 platforms, making it a versatile choice for various computing environments.
|
||||
|
||||
#### Installation
|
||||
|
||||
Using AXERA accelerators requires the installation of the AXCL driver. We provide a convenient Linux script to complete this installation.
|
||||
|
||||
Follow these steps for installation:
|
||||
|
||||
1. Copy or download [this script](https://github.com/ivanshi1108/assets/releases/download/v0.16.2/user_installation.sh).
|
||||
2. Ensure it has execution permissions with `sudo chmod +x user_installation.sh`
|
||||
3. Run the script with `./user_installation.sh`
|
||||
|
||||
#### Setup
|
||||
|
||||
To set up Frigate, follow the default installation instructions, for example: `ghcr.io/blakeblackshear/frigate:stable`
|
||||
|
||||
Next, grant Docker permissions to access your hardware by adding the following lines to your `docker-compose.yml` file:
|
||||
|
||||
```yaml
|
||||
devices:
|
||||
- /dev/axcl_host
|
||||
- /dev/ax_mmb_dev
|
||||
- /dev/msg_userdev
|
||||
```
|
||||
|
||||
If you are using `docker run`, add this option to your command `--device /dev/axcl_host --device /dev/ax_mmb_dev --device /dev/msg_userdev`
|
||||
|
||||
#### Configuration
|
||||
|
||||
Finally, configure [hardware object detection](/configuration/object_detectors#axera) to complete the setup.
|
||||
</details>
|
||||
|
||||
## Docker
|
||||
|
||||
Running through Docker with Docker Compose is the recommended install method.
|
||||
|
||||
@ -4,10 +4,15 @@
|
||||
border-bottom: 1px solid #ffd166;
|
||||
text-align: center;
|
||||
font-size: 15px;
|
||||
}
|
||||
}
|
||||
|
||||
.alert a {
|
||||
[data-theme="dark"] .alert {
|
||||
background: #3b2f0b;
|
||||
border-bottom: 1px solid #665c22;
|
||||
}
|
||||
|
||||
.alert a {
|
||||
color: #1890ff;
|
||||
font-weight: 500;
|
||||
margin-left: 6px;
|
||||
}
|
||||
}
|
||||
|
||||
86
frigate/detectors/plugins/axengine.py
Normal file
86
frigate/detectors/plugins/axengine.py
Normal file
@ -0,0 +1,86 @@
|
||||
import logging
|
||||
import os.path
|
||||
import re
|
||||
import urllib.request
|
||||
from typing import Literal
|
||||
|
||||
import axengine as axe
|
||||
|
||||
from frigate.const import MODEL_CACHE_DIR
|
||||
from frigate.detectors.detection_api import DetectionApi
|
||||
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
||||
from frigate.util.model import post_process_yolo
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
DETECTOR_KEY = "axengine"
|
||||
|
||||
supported_models = {
|
||||
ModelTypeEnum.yologeneric: "frigate-yolov9-.*$",
|
||||
}
|
||||
|
||||
model_cache_dir = os.path.join(MODEL_CACHE_DIR, "axengine_cache/")
|
||||
|
||||
|
||||
class AxengineDetectorConfig(BaseDetectorConfig):
|
||||
type: Literal[DETECTOR_KEY]
|
||||
|
||||
|
||||
class Axengine(DetectionApi):
|
||||
type_key = DETECTOR_KEY
|
||||
|
||||
def __init__(self, config: AxengineDetectorConfig):
|
||||
logger.info("__init__ axengine")
|
||||
super().__init__(config)
|
||||
self.height = config.model.height
|
||||
self.width = config.model.width
|
||||
model_path = config.model.path or "frigate-yolov9-tiny"
|
||||
model_props = self.parse_model_input(model_path)
|
||||
self.session = axe.InferenceSession(model_props["path"])
|
||||
|
||||
def __del__(self):
|
||||
pass
|
||||
|
||||
def parse_model_input(self, model_path):
|
||||
model_props = {}
|
||||
model_props["preset"] = True
|
||||
|
||||
model_matched = False
|
||||
|
||||
for model_type, pattern in supported_models.items():
|
||||
if re.match(pattern, model_path):
|
||||
model_matched = True
|
||||
model_props["model_type"] = model_type
|
||||
|
||||
if model_matched:
|
||||
model_props["filename"] = model_path + ".axmodel"
|
||||
model_props["path"] = model_cache_dir + model_props["filename"]
|
||||
|
||||
if not os.path.isfile(model_props["path"]):
|
||||
self.download_model(model_props["filename"])
|
||||
else:
|
||||
supported_models_str = ", ".join(model[1:-1] for model in supported_models)
|
||||
raise Exception(
|
||||
f"Model {model_path} is unsupported. Provide your own model or choose one of the following: {supported_models_str}"
|
||||
)
|
||||
return model_props
|
||||
|
||||
def download_model(self, filename):
|
||||
if not os.path.isdir(model_cache_dir):
|
||||
os.mkdir(model_cache_dir)
|
||||
|
||||
GITHUB_ENDPOINT = os.environ.get("GITHUB_ENDPOINT", "https://github.com")
|
||||
urllib.request.urlretrieve(
|
||||
f"{GITHUB_ENDPOINT}/ivanshi1108/assets/releases/download/v0.16.2/{filename}",
|
||||
model_cache_dir + filename,
|
||||
)
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
results = None
|
||||
results = self.session.run(None, {"images": tensor_input})
|
||||
if self.detector_config.model.model_type == ModelTypeEnum.yologeneric:
|
||||
return post_process_yolo(results, self.width, self.height)
|
||||
else:
|
||||
raise ValueError(
|
||||
f'Model type "{self.detector_config.model.model_type}" is currently not supported.'
|
||||
)
|
||||
Loading…
Reference in New Issue
Block a user